Original Article
Conflicting roles of EGFR expression by subtypes in breast cancer

Masanori Oshi1,2*, Shipra Gandhi3*, Yoshihisa Tokumaru1,4, Li Yan5, Akimitsu Yamada2, Ryusei Matsuyama2, Takashi Ishikawa9, Itaru Endo2, Kazuaki Takabe1,2,3,6,7,8,9

1Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA; 2Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; 3Department of Medical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263, USA; 4Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; 5Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA; 6Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan; 7Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; 8Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14263, USA; 9Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan. *Equal contributors.

Received May 20, 2021; Accepted August 31, 2021; Epub October 15, 2021; Published October 30, 2021

Abstract: Epidermal growth factor receptor (EGFR) is one of the receptors that belong to the epidermal growth factor family of receptor tyrosine kinases (ErbBs). Several malignancies including breast cancer that express EGFR have poor prognosis. Our study examined the EGFR expression among 5176 breast cancer patients from GSE96058 and METABRIC cohorts and the contribution of tumor immune microenvironment in different subtypes. We found that among different breast cancer subtypes, EGFR expression in TNBC was the highest compared to other subtypes. EGFR high ER-positive/HER2-negative breast cancer had significantly higher survival compared to EGFR low ER-positive/HER2-negative breast cancer. It was also associated with high level of intratumor heterogeneity and homologous recombination defects (HRD). This group was also enriched in immune-related gene sets. On the other hand, low EGFR tumor was enriched in cell proliferation-related gene sets. However, these findings were not observed in TNBC. Interestingly, there was a greater infiltration of anti-cancer immune cells in high EGFR ER-positive/HER2-negative breast cancers, while, TNBC with higher EGFR expression had lower fraction of immune cells along with low level of cytolytic activity. Tumor cells have significantly higher EGFR expression compared to immune cells in single cell sequencing data. There was higher expression of immune checkpoint molecules in high EGFR ER-positive/HER2-negative breast cancer but lower expression in TNBC. High EGFR metastatic tumor was significantly associated with worse survival, but no association with infiltrating immune cells was observed. Our study shows that higher EGFR expression in ER-positive/HER2-negative breast cancer is associated with improved outcomes and an anti-cancer immune microenvironment.

Keywords: Breast cancer, cytolytic activity, EGFR, subtype, immune cell, tumor immune microenvironment, metastasis, survival analysis, triple negative breast cancer

Introduction
The epidermal growth factor receptor belongs to the epidermal growth factor family of receptor tyrosine kinases (ErbBs). This receptor is responsible for regulating vital functions in epithelial cell physiology [1]. In several malignancies, the EGFR receptor could be overexpressed or mutated. This receptor is also the target of several FDA approved cancer therapies [2]. This ErbB family also includes several other members like HER2, HER3 and HER4. Homo- or heterodimerization of these receptors results in their activation and this initiates further signaling downstream [3].

Overexpression of EGFR is associated with poor clinical outcomes in several malignancies, such
Clinical relevance of EGFR expression in breast cancer subtypes

as, head and neck cancer [4], non-small cell lung carcinoma (NSCLC) [5], colorectal carcinoma [6] and endometrial cancer [7]. Other than a higher expression of the receptor, several tumors have other mechanisms whereby somatic mutations of the EGFR receptor results in constitutive kinase activity, as observed in NSCLC. First generation tyrosine kinase inhibitors (TKIs) such as erlotinib, gefitinib and second generation TKIs such as afatinib are currently Food and Drug Administration (FDA) approved for the treatment of NSCLC with EGFR somatic activating mutation. This is based on a head-to-head comparison showing improved progression free survival with these TKIs versus chemotherapy alone in prospective clinical trials. United States FDA has approved osimertinib for the first-line treatment of metastatic NSCLC with EGFR exon 19 or exon 21 L858R mutations. Additionally, osimertinib has also shown efficacy in inhibiting T790M mutations which is a secondary activating mutation that develops as a result of use of earlier-generation TKIs [8]. In addition to these activating mutations, FDA has also approved cetuximab and panitumumab, two antibodies blocking EGFR ligand for the treatment of colorectal and head and neck carcinomas.

EGFR has also been studied extensively in breast cancer. EGFR overexpression has been associated with an aggressive tumor biology as observed in preclinical models of breast cancer and also with an aggressive phenotype in human breast cancer. In the preclinical models, higher EGFR expression predicts for increased tumor proliferation, resistance to apoptosis and also results in epithelial-to-mesenchymal transition. At the same time, EGFR overexpression in human breast cancer has been associated with clinical presentation with large tumor size, poor differentiation and worse clinical outcomes [9, 10]. Almost 15-45% breast cancers overexpress EGFR with higher expression reported in inflammatory breast cancer and triple negative breast cancer (TNBC). The EGFR expression is observed to decrease with increasing hormone receptor expression [11-13].

It has been observed the EGFR expression is associated with presence of certain epitopes that are able to induce both adaptive and innate immune response in patients with NSCLC [14]. There is a plethora of data on the direct role of EGFR in mediating EMT, however, the interplay between EGFR expression and immune profile in different subtypes of breast cancer has not been investigated. We hypothesized that there is a complex interaction between the EGFR expression and immune cells which may potentially play a role in influencing outcomes.

Materials and methods

Data acquisition of breast cancer patients

Data was obtained for 3,273 breast cancer patients from GSE96058 cohort who had transcriptome profiling of resected tumors in an ongoing study. Publicly available clinical data of these patients was obtained from resources that are noted in a recent The Sweden Cancerome Analysis Network-Breast (SCAN-B) study [15]. Molecular Taxonomy of Breast Cancer International Consunim (METABRIC) cohort was utilized to obtain both data on clinical information and gene expression from 1,903 breast cancer patients. The Cancer Genome Atlas (TCGA) cohort was utilized to obtain data on EGFR expression and breast cancer subtype from 1,069 female breast cancer patients [16]. Single-cell RNA-sequence data was obtained on tumor cells, stromal cells, immune cells, and myeloid cells in breast cancer from GSE75688 cohort [17], which was obtained from Gene Expression Omnibus.

Other scores

We used several scores, (1) xCell scores as immune cells score calculated by xCell algorithm [18], (2) Cytolytic activity (CYT) was calculated using two genes, granzyme A and perforin, established by Rooney et al. [19], and (3) Intratumor heterogeneity, homologous recombination defects (HRDs), and mutation- and neoantigen-related score; silent and non-silent mutation rate, fraction altered, single-nucleotide variation (SNV) and indel neoantigens, calculated by Thorsson et al. [20] in the TCGA cohort, as we previously reported [21-26].

Gene set enrichment analysis (GSEA)

GSEA [27] algorithm was used to explore the difference in biological function between two levels of EGFR expression groups with MSigDB Hallmark gene sets [28]. As recommended by GSEA, the statistical significance was determined using False Discovery Rate (FDR) of less
Clinical relevance of \textit{EGFR} expression in breast cancer subtypes

than 25\%, as has been previously reported by our group [29-33].

\textbf{Other statistical analyses}\n
R software was used to do all statistical analysis in this study. The depicted \(P \) values were calculated using Kruskal-Wallis, Mann-Whitney \(U \), or Fisher test in group comparison analysis, and log-rank test in survival analysis. Statistical significance was indicated by \(P \)-value less than 0.05.

\textbf{Results}\n
\textit{Better survival with higher EGFR expression was observed in estrogen receptor (ER)-positive/human epidermal growth factor receptor 2 (HER2)-negative breast cancer, but \textit{EGFR} expression did not change outcomes in triple-negative breast cancer (TNBC)}

Breast cancer is known to have lower \textit{EGFR} level than other cancers. In fact, when comparing \textit{EGFR} expression among cancers using the TCGA data, the \textit{EGFR} expression in breast cancer tended to be lower than in other cancers (Figure S1). Since breast cancer is known to have different biological characteristics among subtypes, we expected that \textit{EGFR} expression would also be different among breast cancer subtypes. GSE96058 (\(n = 3273 \)) and METABRIC (\(n = 1904 \)) cohorts were used to examine the relationship between \textit{EGFR} expression and breast cancer subtypes in this study. As expected and consistent with the known literature, TNBC was associated with the highest \textit{EGFR} expression compared to other breast cancer subtypes consistently in both the cohorts (Figure 1A; both \(P<0.001 \)). The role of \textit{EGFR} expression was next tested by examining the survival using the patient data from these cohorts in each breast cancer subtype. High and low \textit{EGFR} groups within each cohort were defined using the median value as a cut-off. Among ER-positive/HER2-negative breast cancer, high expression of \textit{EGFR} was associated

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Association of \textit{EGFR} expression with breast cancer subtype in the GSE96058 and METABRIC cohorts. A. Boxplots of \textit{EGFR} expression by breast cancer subtypes; ER-positive/HER2-negative (ER+/HER2-), HER2-positive (HER2+), and TNBC. Kruskal-Wallis test was used to calculate the depicted \(P \)-values here. B. Kaplan-Meier survival curves with \(P \)-values calculated using log-rank test shown here for overall survival (OS) both in \textit{EGFR} high and low groups among ER-positive/HER2-negative breast cancer and TNBC subtypes. High and low \textit{EGFR} groups are defined by the median value of \textit{EGFR} expression within each cohort used as the cut-off here. ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; TNBC, triple-negative breast cancer; OS, overall survival.}
\end{figure}
Clinical relevance of \textit{EGFR} expression in breast cancer subtypes

with better survival in the GSE96058 cohort, but this difference was not observed in TNBC (Figure 1B; \(P < 0.001 \), and \(P = 0.306 \), respectively). METABRIC cohort was used as the validation cohort and these results were also consistent in that cohort (\(P < 0.001 \) and \(P = 0.565 \), respectively). Thus, high \textit{EGFR} expression did show statistically significant survival improvement in the ER-positive/HER2-negative breast cancer, but not in TNBC.

High \textit{EGFR} expression was associated with both homologous recombination deficiency (HRD) and with intratumoral heterogeneity in ER-positive/HER2-negative breast cancer but not in TNBC.

We have previously reported that advanced breast cancer has high mutation [34, 35]. Given the knowledge, we expected that high \textit{EGFR} expression, which was associated with better survival as shown in Figure 1B, would tend to associate with low mutation level in ER-positive/HER2-negative breast cancer. In contrast to our expectation, we observed that high \textit{EGFR} expression was associated with high score of intratumor heterogeneity and HRD in ER-positive/HER2-negative breast cancer (Figure 2, both \(P < 0.001 \)), but there was no association observed with other mutation scores, such as, mutation-related score; silent and non-silent mutation (\(P = 0.360 \) and 0.183), fraction altered (\(P = 0.494 \)), single nucleotide variation (SNV) and indel neoantigens (\(P = 0.144 \) and 0.089). On the other hand, among TNBC, we did not observe any significant association between \textit{EGFR} expression or intratumoral heterogeneity, HRD, mutation or neoantigen scores (Figure 2).

\textbf{A high \textit{EGFR} tumor enriched several pro-cancer-related gene sets and a low \textit{EGFR} tumor enriched cell proliferation-related gene sets in ER-positive/HER2-negative breast cancer, but not in TNBC.}

Since \textit{EGFR} overexpression is associated with different clinical outcomes in different breast cancer subtypes, therefore, we expected that the biological function of \textit{EGFR} expression would vary by subtypes. We found that high \textit{EGFR} ER-positive/HER2-negative tumor was enriched in several hallmark gene sets, such as hypoxia, angiogenesis, notch signaling, KRAS signaling, and epithelial mesenchymal transition (EMT) in the GSE96058 cohort (Figure 3A). Consistent results were observed in the validation cohort, METABRIC (Figure S3A). On the other hand, high \textit{EGFR} TNBC was enriched in protein secretion, androgen response, estrogen response early, glycolysis, PI3K/AKT/MTOR signaling, and cholesterol homeostasis gene sets (Figure 3A). Interestingly, these results were also consistently validated by METABRIC cohort (Figure S3A).
Clinical relevance of *EGFR* expression in breast cancer subtypes

A

<table>
<thead>
<tr>
<th>NES</th>
<th>APICAL_JUNCTION</th>
<th>UV_RESPONSE_DN</th>
<th>MYOGENESIS</th>
<th>TGF_BETA_SIGNALING</th>
<th>KRAS_SIGNALING_UP</th>
<th>WNT_BETA_Catenin_SIGNALING</th>
<th>HYPOXIA</th>
<th>HEDGEHOG_SIGNALING</th>
<th>EM T</th>
<th>TNFA_SIGNALING_VIA_NFKB</th>
<th>ANGIOGENESIS</th>
<th>NOTCH_SIGNALING</th>
<th>KRAS_SIGNALING_DN</th>
<th>XENOBOTIC_METABOLISM</th>
<th>APOPTOSIS</th>
<th>APICAL_SURFACE</th>
<th>ADIPOGENESIS</th>
<th>P53_PATHWAY</th>
<th>IL6_JAK_STAT3_SIGNALING</th>
<th>UV_RESPONSE_UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

B

E2F targets

<table>
<thead>
<tr>
<th>NES</th>
<th>FDR</th>
<th>EGFR High</th>
<th>FDR</th>
<th>EGFR Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.70</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G2M checkpoint

<table>
<thead>
<tr>
<th>NES</th>
<th>FDR</th>
<th>EGFR High</th>
<th>FDR</th>
<th>EGFR Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.52</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MYC targets v1

<table>
<thead>
<tr>
<th>NES</th>
<th>FDR</th>
<th>EGFR High</th>
<th>FDR</th>
<th>EGFR Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.92</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MYC targets v2

<table>
<thead>
<tr>
<th>NES</th>
<th>FDR</th>
<th>EGFR High</th>
<th>FDR</th>
<th>EGFR Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.73</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DNA repair

<table>
<thead>
<tr>
<th>NES</th>
<th>FDR</th>
<th>EGFR High</th>
<th>FDR</th>
<th>EGFR Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.83</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5098

Am J Cancer Res 2021;11(10):5094-5110
Clinical relevance of *EGFR* expression in breast cancer subtypes

Figure 3. Association of *EGFR* expression with biological function in each breast cancer subtype in the GSE96058 cohort. A. Bar plots showing significantly enriched gene sets in the high *EGFR* groups in each subtype consistently in both GSE96058 and METABRIC cohorts. B. Enrichment plots of cell proliferation-related gene sets; G2M checkpoint, E2F targets, and MYC targets v1 and v2, and DNA repair in ER+/HER2- and TNBC subtype. The median value of *EGFR* expression within each cohort was used to classify them into high and low groups.

Furthermore, low *EGFR* tumor was enriched in cell proliferation-related gene sets; G2M checkpoint, E2F targets, MYC target v1 and v2, and DNA repair in ER-positive/HER2-negative breast cancer, but not in TNBC (*Figure 3B*). Particularly the association of *EGFR* with E2F targets, MYC targets v2, and DNA repair gene sets, were also validated in the METABRIC cohort (*Figure S2B*). *EGFR* expression was confirmed to be significantly correlated with *EGFR* signaling pathway in GSE96058 cohort (*Figure S2*). Spearman’s rank correlation coefficient (r) = 0.518, P<0.01. Activity of *EGFR* signaling pathway was quantified by gene set variation analysis (GSVA) algorithm utilizing the similar approach we have previously reported [36-41]. These results suggest that the association between low *EGFR* and poor clinical outcomes in ER-positive/HER2-negative breast cancer may be influenced by cell proliferation.

*Figures 3. A high *EGFR* tumor enriched immune-related gene sets significantly in ER-positive/HER2-negative breast cancer, but not in TNBC.*

Since there is data showing that certain epitopes within *EGFR* expressed tumors are able to elicit both cellular and immune response, we investigated the distribution of immune related gene sets in *EGFR* high breast cancer [14]. As expected, a high *EGFR* ER+/HER2-negative tumor was enriched in immune-related gene sets, including allograft rejection (*Figure 4*), normal enrichment score (NES) = 1.40, false discovery rate (FDR) = 0.11, inflammatory response (NES = 1.61, FDR = 0.04), IL6/JAK/STAT3 signaling (NES = 1.53, FDR = 0.06), IL2/STAT5 signaling (NES = 1.70, FDR = 0.02), complement (NES = 1.60, FDR = 0.04) and coagulation (NES = 1.93, FDR<0.01), in ER-positive/HER2-negative breast cancer in GSE96058 cohort. METABRIC cohort was used as the validation cohort where consistent results were observed (*Figure S4*). On the other hand, low *EGFR* TNBC were enriched in immune-related gene sets, although this was not statistically significant (*Figure 4*). Consistent results were observed in the METABRIC cohort which was used to validate the results (*Figure S4*). Therefore, we observe that high *EGFR* ER-positive/HER2-negative tumor is enriched in immune-related gene sets, but similar results were not observed in TNBC.

*High *EGFR* was signification associated with high level of cytolytic activity in ER-positive/HER2-negative breast cancer, but with lower cytolytic activity in TNBC.*

Next, it was interesting to see which types of immune cells infiltrated the high *EGFR* tumor. We found that there was a significantly higher fraction of anti-cancer immune cells, namely, CD8+ T cells, CD4+ T cells, dendritic cells (DC), and lower fraction of T helper type 1 (Th1) cells and M1 macrophages, and pro-cancer immune cells; regulatory T cells (Tregs), and Th2 cells, in ER-positive/HER2-negative breast cancer (*Figure 5A and 5B*). These results were validated consistently in METABRIC cohort (*Figure S5*). On the other hand, there were lower fraction of anti-cancer immune cells; CD8+ T cells, CD4+ T cells, and M1 macrophages and pro-cancer immune cells; Th2 and M2 macrophages, in *EGFR* high TNBC (*Figure 5A and 5B*). Consistent results were observed in the validation cohort, METABRIC (*Figure S5*). Furthermore, high *EGFR* ER-positive/HER2-negative breast cancer was significantly associated with high level of cytolytic activity (CYT), on the other hand, opposite results were observed in high *EGFR* TNBC (*Figure 5C*, both P<0.001). These results were validated consistently in METABRIC cohort (*Figure S5C*). Furthermore, *EGFR* was highly expressed by tumor cells, but not immune cells (*Figure 5D*).

*Figures 5. High *EGFR* expression showed significant association with high expression of immune checkpoint molecules in ER-positive/HER2-negative breast cancer, while, lower expression of these immune checkpoint molecules was observed in TNBC.*

There was higher expression of several immune checkpoint molecules, including Programmed cell death protein 1 (PD-1), Programmed death-
Clinical relevance of *EGFR* expression in breast cancer subtypes

Figure 4. Association of *EGFR* expression with immune-related biological function in each breast cancer subtype in the GSE96058 cohort. Enrichment plots for immune-related gene sets for *EGFR* high and low expression within the breast cancer subtypes, ER-positive/HER2-negative breast cancer and TNBC. Immune-related gene sets consisting of allograft rejection, inflammatory response, IL6/JAK/STAT3 signaling, IL2/STAT5 signaling, complement and coagulation pathways. Median value of *EGFR* expression was used to divide the two groups within each cohort.
ligand 1 (PD-L1) and PD-L2, Cytotoxic T-lymphocyte-associated protein 4 (CTLA4), Indoleamine 2,3-dioxygenase 1 (IDO1), and B-and T-lymphocyte attenuator (BTLA), as well as inhibitory checkpoint index (IICI), in high EGFR ER-positive/HER2-negative breast cancer in GSE96058 cohort (Figure 6; all P<0.001). On the other hand, among TNBC, high EGFR expression was significantly associated with low expression of immune checkpoint molecules, and the level of IICI. These results of the association of EGFR with immune checkpoint molecules were validated in METABRIC cohort (Figure S6).
Clinical relevance of EGFR expression in breast cancer subtypes

A high EGFR metastatic tumor was significantly associated with worse survival, but there was no association observed with the fraction of infiltrating immune cells.

Finally, we examined the role of EGFR overexpression in influencing outcomes for metastatic breast cancer. We found that high EGFR expression was associated with a trend towards worse survival in metastatic tumor (Figure 7A). Especially, high EGFR expression was significantly associated with worse survival in liver metastatic tumor. In order to investigate the contribution of immune cells to outcomes, the association between EGFR expression and immune cell infiltration was analyzed in metastatic tumor and no significant association was observed (Figure 7C and 7D). Furthermore, EGFR was not associated with CYT in metastatic tumor (Figure 7E). These results suggest that high EGFR in metastatic tumor was associated with worse survival, but immune cells did not seem to be involved in influencing the observed outcomes.

Discussion

In this study, the role of EGFR expression in influencing clinical outcomes in breast cancer was investigated using large number of samples in multiple cohorts. We found that among breast cancer subtypes, EGFR expression in TNBC was the highest when compared to other subtypes, which supports the existing literature. High EGFR expression was significantly associated with improved survival in ER-positive/HER2-negative breast cancer and also significantly associated with high level of intratumor heterogeneity and HRD. Furthermore, they were enriched not only in several pro-cancer-related gene sets, but also in immune-related gene sets. On the other hand, low EGFR tumor was enriched in cell proliferation-related gene sets which may explain the observed worse survival. However, these findings were not observed in TNBC. Interestingly, high EGFR ER-positive/HER2-negative breast cancers were infiltrated with anti-cancer immune cells. On the other hand, a lower fraction of immune cells was observed in high EGFR TNBC along with low level of cytolytic activity. In the single cell sequence data, tumor cells have significantly higher EGFR expression compared to immune cells. High EGFR expression among ER-positive/HER2-negative breast cancer was significantly associated with higher expression of immune checkpoint molecules, while, on the other hand, there was lower immune checkpoint molecule expression in high EGFR TNBC. Finally, high EGFR metastatic tumor was significantly associated with worse survival, but there was no association with infiltrating immune cells.

Even though we did not observe any survival difference between high vs. low EGFR expres-
Clinical relevance of *EGFR* expression in breast cancer subtypes

Figure 7. Association of *EGFR* expression with patient survival and anti-cancer and pro-cancer immune cells in metastatic tumor using the GSE96058 cohort. (A) Kaplan-Meier survival curves with *P*-values calculated using the log-rank test for overall survival (OS) in metastatic breast cancer within the low and high *EGFR* groups. (B) Bar plots of hallmark gene sets with significant enrichment within high and low *EGFR* metastatic tumor. Boxplots with medians and interquartile ranges of (C) anti-cancer immune cells; CD8+ T cells, CD4+ T cells, Th1 cells, M1 macrophages, DC, and NK cells, and (D) pro-cancer immune cells; regulatory T cells, Th2 cells, and M2 macrophages, and (E) cytolytic activity by low and high *EGFR* tumor. Mann-Whitney U test was used to calculate the depicted *P*-values. The median value of *EGFR* expression within each cohort was used as a cut-off to divide into high and low *EGFR* groups.
sion in TNBC in our study, but, it is evident in literature that enhanced EGFR expression in TNBC within the primary tumor has been associated with EMT resulting in increase in metastases and therefore, could decrease the survival of TNBC patients. Since there are no targeted treatments for TNBC, therefore, EGFR expression presents a great opportunity to study targeted approaches. EGFR inhibitors including erlotinib [42] and gefitinib [43] were studied in an unselected population of metastatic breast cancer, and no correlation between the expression of EGFR with treatment response was observed and overall results were disappointing. Similarly, EGFR monoclonal antibodies (panitumumab, cetux-imab) also have had minimal efficacy in treatment of TNBC [44, 45]. It has also been observed in breast cancer tissues from patients that once the tumor metastasizes, EGFR expression is down-regulated via increased EGFR internalization, decreased expression as part of an adaptive response, and this could correlate with resistance to EGFR inhibitors in the breast cancer setting as opposed to NSCLC where EGFR inhibitors are approved for activating EGFR mutation [46].

It is also important to note the rarity of EGFR mutations in breast cancer, which is in sharp contrast to lung cancer [47]. EGFR mutations were only present in 11.4% (8/70) TNBC tumor tissues as revealed by mutational analysis [48]. Similar mutations like exon 19 deletions and exon 21 mutations in the EGFR kinase domain were reported in breast cancer, that have been previously reported in lung cancer [48]. However, the percentage of TNBC harboring mutations has varied from zero to varying percentages [49]. Although our findings did not show any significant association between TNBC and survival, low EGFR expression has been shown to increase cell proliferation in TNBC. We have previously reported the poor prognosis for breast cancer observed with high cell proliferation [50-52]. In addition, high tumor immunity has been reported to be associated with better prognosis in breast cancer [53, 54]. Our current findings suggest that differences in the clinical outcomes of EGFR expression in subtypes were probably due to differences in the relationship between EGFR expression and anti-cancer immunity. Furthermore, the finding that tumor cells expressed EGFR significantly higher than immune cells, as indicated by single cell sequence data, suggests that EGFR expression in tumor cells may attract immune cells.

As already established, certain epitopes of EGFR are able to elicit both a humoral and cellular immune response. This is consistent with our data showing higher cytolytic activity in ER+/HER2 negative breast cancer [14]. This was also seen in our analysis where higher EGFR expression correlated with higher immune checkpoint molecule expression in ER-positive/HER2-negative breast cancer. This is consistent with prior data in human bronchial epithelial cell lines, showing that mutation in the EGFR signaling pathway could result in increased PD-L1 expression, or if we are able to induce mutant EGFR expression, it drives increased PD-L1 expression [55], although our study focuses on EGFR expression and not mutation. Higher checkpoint expression due to greater immune cell infiltration may make higher EGFR expression on tumors an attractive target for testing immunotherapeutic strategies for ER-positive/HER2-negative breast cancer. These findings were further confirmed when higher immune related gene sets were observed in the ER-positive/HER2-negative breast cancer subtype. Similar findings in TNBC were not observed in our study. Better outcomes in ER-positive/HER2-negative breast cancer with higher EGFR expression could be explained by a favorable immune profile with higher cytolytic activity, more anti-tumor immune cells, higher immune related gene sets. On the other hand, higher expression of EGFR in TNBC was associated with a worse immune profile, however, no impact on survival was observed within TNBC in our study, but the findings of an unfavorable anti-cancer immune response may explain the worse outcomes observed in TNBC in literature.

EGFR is a well-known cancer driver gene. Aberrant activation of EGFR signaling is associated with progression of breast cancer and with a worse prognosis [9, 10]. Interestingly, we found that high EGFR gene expression was associated with better survival in ER-positive/HER2-negative breast cancer, but not in TNBC. One of the reasons for this observed discrepancy may be related to the fact that EGFR gene expression was so high in TNBC overall that low
expression in that subtype is not low enough compared with ER-positive/HER2-negative breast cancer to show the survival difference as it did in the latter. In agreement with our findings, TNBC has been reported to express higher EGFR gene compared with the other subtypes [11-13]. In ER-positive/HER2-negative subtype, we found that low EGFR expression is associated with high cell proliferation that contributes to worse biology, and high EGFR expression with enhanced immune response and anti-cancer immune cell infiltration that contributes to better biology.

Further, it is known that expression of EGFR does not necessarily cause activation of EGFR signaling pathway, thus clinically EGFR inhibitors suppress the activity of EGFR signaling primarily by inhibiting EGFR phosphorylation. Generally EGFR signaling is assessed by protein expression using western blotting, and there are only a few studies using gene expression. We showed that there was no positive association between EGFR-mutation and EGFR gene expression in Figure S1. In agreement, Lee et al. reported that overexpression of EGFR gene, but not EGFR copy number, was associated with patient prognosis although EGFR gene expression correlated with EGFR protein expression. They suggested that besides the increased EGFR gene copy number, EGFR overexpression may be induced by other mechanisms, such as mutation, aberrant transcription or translational modification [56]. Several genes are involved in EGFR signaling, and it is reasonable to consider that the expression of a single EGFR gene alone may not reflect the entire signaling cascade. We previously reported that ER response signaling score comprised of 200 gene expression was significantly associated with clinical outcome [33], but ESR1 and ESR2 expression were not. Furthermore, there was no correlation of ER response signaling with ESR1 and ESR2 expression. To this end, we analyzed the correlation between EGFR expression and activation of EGFR signaling pathway utilizing GSVA algorithm that we have shown in multiple previous studies [36-41], and found a significant correlation with Spearman correlation coefficient ($r = 0.518, \ P<0.01$).

Utilizing the same approach, we confirmed that EGFR gene expression significantly correlated with EGFR signaling pathway (Figure S2). This is in agreement with the previous reports that treatment of cancer cells with EGFR inhibitors would usually decrease EGFR expression due to negative feedback. This finding seems somewhat contradictory with our other finding that cell proliferation-related gene sets were enriched in low EGFR gene expression, and high expression was associated with high level of anti-immune cell infiltration and better survival in ER-positive/HER2-negative breast cancer, whereas that was not the case in TNBC. On the other hand, we did see that EGFR gene expression was associated with epithelial mesenchymal transition, which is a known cancer progression marker [57], and with worse prognosis in metastatic breast cancer. In addition, Bhargava et al. suggested that differences in the relevance of EGFR overexpression by different studies may be due to variation in techniques including the type of antibodies used, definition of overexpression and interobserver variability [47]. Taken together, the role of EGFR expression in breast cancer progression may be context dependent.

Recently, the role of photochemistry-based cancer therapy near-infrared (NIR) photomedicine (PIT) has been focused on. This is a molecularly targeted phototherapy for cancer where a conjugate of a near-infrared, watersoluble, silicon-phothalocyanine derivative called IRdye700DX (IR700), and a monoclonal antibody (mAb) are injected that specifically target an antigen that is expressed on the cancer cell surface. Kobayashi et al. used an antibody that binds to EGFR in cancer cell membranes, which are known to be present in lung, head and neck, and breast cancer. A photochemical “death” switch is activated on local exposure to NIR light that results in immunogenic cell death (ICD) of targeted cancer cells. By the combined use of cancer-targeting NIR-PIT with other immunotherapies, NIR-PIT of a local tumor, could lead to responses in distant metastases, also known as abscopal effect that may result in activation of a systemic anti-cancer immunity and inhibit recurrences by induction of long-term immune memory without the systemic autoimmune adverse effects that are generally observed with immune checkpoint inhibitors. As we have observed in our study, high EGFR tumors attract immune cells (anti-cancer immune cells) and are associ-
ated with high expression of immune checkpoint molecules, especially the ER-positive/HER2-negative breast cancer subtype. Therefore, we cannot help but speculate that PIT may be expected to have a high therapeutic effect on ER-positive/HER2-negative breast cancer for the ones with high EGFR tumors given the favorable immune milieu.

We have discovered interesting features of intratumor EGFR expression in different breast cancer subtypes and also shown that the tumor microenvironment plays unique role in high versus low EGFR expressing tumors in ER-positive/HER2-negative breast cancer and TNBC. However, this study has some limitations. First, this study is retrospective in nature utilizing a large amount of publicly available clinical and genetic data, however, it is important to note that the data on co-morbidity and therapeutic intervention are not available and therefore, the influence of treatment on outcomes is unclear. Another limitation of the current study is that the conclusions are drawn based on data analysis alone without any experiments to validate the underlying mechanism, although the analyses of transcriptome were validated by multiple independent large patient cohorts. We chose to report this way for two reasons. First, the novelty of the current study is to clarify the clinical relevance of EGFR gene expression, where the mechanistic concepts that we investigated have already been previously published and conducting these experiments is simply repetitive. Second, we analyzed cancer tissue in human patients’ body that cannot be completely replicated by any animal models or even cell culture system. As a matter of fact, we have studied numerous syngeneic [58-62], genetic [63-65], and even patient-derived xenograft models [66-68] and organoids [69] using human patient cancer samples; however, none of these completely replicate human tumor. To this end, one can argue that the different results between human samples and animal models may be due to difference between the species. Finally, our study focused on studying EGFR expression and not EGFR mutation and its clinical relevance in the setting when approval of EGFR inhibitors based on the activating mutation status is also limited.

In conclusion, EGFR expression was found to have different characteristics depending on breast cancer subtype. Especially, high EGFR ER-positive/HER2-negative breast cancer was significantly associated with better survival and immunity in tumor immune microenvironment.

Acknowledgements

This work was supported by National Institutes of Health, USA grant R01CA160688, R01CA251545, R01CA250412, R37CA248-018, as well as US Department of Defense BCRP grant W81XWH-19-1-0674, W81XWH-19-1-0111 to K.T., and National Cancer Institute, USA cancer center support grant P30-CA016056 to Roswell Park Comprehensive Cancer Center (RPCCC). Research reported in this publication was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health under award Number KL2TR001413 and UL1TR001412. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Kazuaki Takabe, Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, New York 14263, USA. Tel: 1-716-845-2918; Fax: 1-716-845-1668; E-mail: kazuaki.takabe@roswellpark.org

References

[5] Brabender J, Danenberg KD, Metzger R, Schneider PM, Park J, Salonga D, Hölscher AH and Danenberg PV. Epidermal growth factor receptor and HER2-neu mRNA expression in
Clinical relevance of EGFR expression in breast cancer subtypes

Clinical relevance of \textit{EGFR} expression in breast cancer subtypes

Clinical relevance of EGFR expression in breast cancer subtypes

[54] Oishi M, Takahashi H, Tokumaru Y, Yan L, Rashid OM, Matsuyama R, Endo I and Takabe K. G2M cell cycle pathway score as a prognostic biomarker of metastasis in estrogen recep-
Clinical relevance of **EGFR** expression in breast cancer subtypes

Clinical relevance of EGFR expression in breast cancer subtypes

Figure S1. Association of EGFR expression with cancers. Boxplots of EGFR expression by several cancers in the TCGA cohort. The figure was made through University of California Santa Cruz (UCSC) Xena (xena.ucsc.edu). ACC: adrenocortical carcinoma; BLCA: bladder urothelial carcinoma; BRCA: breast invasive carcinoma; CESC: cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL: cholangiocarcinoma; COAD: colon adenocarcinoma; DLBC: lymphoid neoplasm, diffuse large B-cell lymphoma; ESCA: esophageal carcinoma; GBM: glioblastoma multiforme; HNSC: head and neck squamous cell carcinoma; KICH: kidney chromophobe; KIRC: kidney renal clear-cell carcinoma; KIRP: kidney renal papillary cell carcinoma; LGG: brain lower-grade glioma; LIHC: liver hepatocellular carcinoma; LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; MESO: mesothelioma; OV: ovarian serous cystadenocarcinoma; PAAD: pancreatic adenocarcinoma; PCPG: pheochromocytoma and paraganglioma; PRAD: prostate adenocarcinoma; READ: rectum adenocarcinoma; SARC: sarcoma; SKCM: skin cutaneous melanoma; STAD: stomach adenocarcinoma; TGCT: Testicular Germ Cell Tumors; THCA: thyroid carcinoma; THYM: thymoma; UCEC: uterine corpus endometrial carcinoma; UCS: uterine carcinosarcoma; UVM: uveal melanoma.
Clinical relevance of *EGFR* expression in breast cancer subtypes

Figure S2. Association between EGFR expression and EGFR signaling pathway score in breast cancer. Correlation plot of EGFR expression with EGFR signaling pathway score, which was calculated by GSVA with KEGG pathway in the GSE96058 cohort. Spearman’s rank correlation coefficient (r) was used to perform the analysis.
Clinical relevance of EGFR expression in breast cancer subtypes

A

ER+/HER2-

APICAL_JUNCTION
UV_RESPONSE_DOWN
TGF_BETA_SIGNALING
MYOGENESIS
KRAS_SIGNALING_UP
P53_PATHWAY
HYPOXIA
TNFA_SIGNALING_VIA_NFKB
EMT
IL6_JAK_STAT3_SIGNALING
WNT_BETA_CATEIN_SIGNALING
HEDGEHOG_SIGNALING
ANGIOGENESIS
ADIPOGENESIS
APICAL_SURFACE
APOPTOSIS
XENOBOTIC_METABOLISM
NOTCH_SIGNALING
KRAS_SIGNALING_DOWN
UV_RESPONSE_UP

B

E2F targets
G2M checkpoint
MYC targets v1
MYC targets v2
DNA repair

ER+/HER2-

Enrichment score
NES = -1.70
FDR = 0.02

TNBC

Enrichment score
High EGFR Low
Clinical relevance of *EGFR* expression in breast cancer subtypes

Figure S3. Association of *EGFR* expression with biological function in each breast cancer subtype in METABRIC cohort. A. Bar plots of gene sets that significantly enriched in high *EGFR* groups in each subtype consistently in both GSE96058 and METABRIC cohorts. B. Enrichment plots of cell proliferation-related gene sets; E2F targets, G2M checkpoint, and MYC targets v1 and v2, and DNA repair in each breast cancer subtype. The two groups were divided by median value of *EGFR* expression within each cohort.

Figure S4. Association of *EGFR* expression with immune-related biological function in each breast cancer subtype in METABRIC cohort. Enrichment plots of immune-related gene sets; allograft rejection, inflammatory response, IL2/STAT5 signaling IL6/JAK/STAT3 signaling, coagulation, and complement in ER-positive/HER2-negative breast cancer and TNBC within *EGFR* high and low groups. The two groups were divided by median value of *EGFR* expression within each cohort.
Clinical relevance of EGFR expression in breast cancer subtypes

Figure S5. Association of EGFR expression with immune fraction and cytolytic activity in each breast cancer subtype in the METABRIC cohort. (A) Boxplots of the infiltrating fraction of anti-cancer immune cells; CD8+ T cells, CD4+ T cells, T helper type 1 (Th1) cells, M1 macrophages, dendritic cells (DC), and natural killer (NK) T cells, and (B) pro-cancer immune cells; regulatory T cells, T helper type 2 (Th2) cells, and M2 macrophages, and (C) cytolytic activity (CYT) score by high and low EGFR expression in each breast cancer subtype. The two groups were divided by median value of EGFR expression within each cohort. P-values were calculated by Mann-Whitney U test.
Clinical relevance of EGFR expression in breast cancer subtypes

Figure S6. Association between EGFR and immune checkpoint molecules expression in each breast cancer subtype in METABRIC cohort. Boxplots of expression of immune checkpoint molecules; PD-1, PD-L1, PD-L2, CTLA4, IDO1, and BTLA.