Review Article
Basic approaches, challenges and opportunities for the discovery of small molecule anti-tumor drugs

Yu-Shui Ma1,2,3*, Ji-Bin Liu2*, Xiao-Li Yang3, Rui Xin3, Yi Shi1,2, Dan-Dan Zhang3, Pei-Yao Wang3, Qin-Lu Lin1, Wen Li1, Da Fu1,3

1National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; 2Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China; 3Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China. *Equal contributors.

Received January 21, 2021; Accepted May 15, 2021; Epub June 15, 2021; Published June 30, 2021

Abstract: Chemotherapy is one of the main treatments for cancer, especially for advanced cancer patients. In the past decade, significant progress has been made with the research into the molecular mechanisms of cancer cells and the precision medicine. The treatment on cancer patients has gradually changed from cytotoxic chemotherapy to precise treatment strategy. Research into anticancer drugs has also changed from killing effects on all cells to targeting drugs for target genes. Besides, researchers have developed the understanding of the abnormal physiological function, related genomics, epigenetics, and proteomics of cancer cells with cancer genome sequencing, epigenetic research, and proteomic research. These technologies and related research have accelerated the development of related cancer drugs. In this review, we summarize the research progress of anticancer drugs, the current challenges, and future opportunities.

Keywords: Drug therapy, cancer, inhibitor, comprehensive utilization

In the 1940s, nitrogen mustard was found to cure malignant lymphoma in humans [1] which has boosted researchers’ confidence in curing cancer. With the rapid development of biology, people have researched the subjects including biochemistry, immunology, and therapeutics [2-4], leading the cognition of tumors to a genetic level [5-7]. The clinical application of various antitumor drugs has continually prompted researchers to explore many new antitumor drugs [8-10].

Small molecule drugs mainly refer to chemical synthetic drugs with molecular weight less than 1000, of which structure has good spatial dispersion and leads to their high drug efficiency and pharmacokinetic properties [11]. As a result, the market started to focus on those drugs. Small molecule anticancer drugs, usually signal transduction inhibitors, can block the signal transduction pathways for tumor growth and proliferation, then to cure the tumor [12] such as, Novartis Gleevec’s for the treatment of chronic myeloid leukemia and gastrointestinal stromal tumors and AstraZeneca’s treatment of non-small cell lung cancer with epidermal growth factor receptor (EGFR) as the target. Small molecule drugs have already had the advantages of wide use and mature theory.

Although small molecule drugs have achieved encouraging results, there are still many challenges. Disobedience of the rational drug use would increase the side effects and drug tolerance, leading to poor treatment effect [13]. Secondly, small molecule drug monotherapy, especially protease inhibitors, cancer cells are prone to cause drug-resistant mutations in about 2 weeks [14]. In addition, small molecule drugs are prone to generate multi drug resistance sites. In a word, the small molecule drugs are in the ascendant, and new drugs are constantly emerging, which has made the anti-cancer and anti-tumor drug treatment essential [15]. With the continuous development of such drugs with low drug resistance, high efficacy
Discovered of small molecule drugs

2387 Am J Cancer Res 2021;11(6):2386-2400

and few side effects, it is believed that in the near future, there will be significance breakthrough in the treatment of cancer.

Nowadays, novel and effective antitumor drugs is urgently needed. The basic approaches, challenges, and opportunities for the discovery of antineoplastic agents are summarized below.

Drug target selection

Choosing the right target needs to balance benefits and risks, which is one of the most critical problems [19-21]. Wrong drug target is a costly waste of drug research and development [22-24]. In general, the selection of targets depends on a detailed understanding of the molecular mechanism (Figure 1). After the target activity is regulated in pharmacology (including activation or inhibition), it can achieve antitumor effects both in vitro cell system and in vivo, and has selectivity for cancer cells with few side effects [25-27].

Naturally-derived drugs

Naturally-derived drugs kill tumor cells by inhibiting proliferation and inducing apoptosis aiming at metabolic heterogeneity; the drugs also act on tumor cells in indirect manners, such as immune regulation and epithelial-mesenchymal transition (EMT) inhibition of metastasis (Figure 2). Therefore, researchers have focused on identifying natural products to use as drugs for treating cancer [29].

At present, more than 2,000 plants have been screened for anticancer activity in China, 190

Figure 1. Discovery and development from gene to drug. Small molecules that act on new molecular targets represent therapeutic dependencies and vulnerabilities. There are four main steps of cancer drug discovery: target selection and validation, chemical hit and lead generation, lead optimization to select a clinical candidate, and biology-led clinical trials.
have shown anticancer activity in animal experiments [30]. Paclitaxel is an alkaloid compound isolated and purified from the bark of the gymnosperm yew [31]. When treated with paclitaxel, the cells would accumulate microtubules interfere with various functions of the cells, such as blocking the normal cell division [32]. In Phase II-III clinical studies, paclitaxel is mainly used for ovarian cancer [33] and breast cancer [34]; it has also shown to have some beneficial effects against lung cancer, colorectal cancer and melanoma [35-38]. Another plant called vinorelbine is a cell cycle-specific drug with semi-synthetic compound [39]; the plant navelbine could stop mitosis in the metaphase by blocking tubulin polymerization to form microtubules and induce tubule formation disorders [40, 41].

Synthetic antitumor drugs

Chemical antitumor drug refers to cytotoxic drug and acts on the chemical structure of DNA [42], which plays an irreplaceable role in treating cancer; These drugs are mainly alkylating agents, antimetabolites, antitumor antibiotics, platinum complexes, and targeted drugs [43]. However, while these drugs kill cancer cells, normal cells would also receive detrimental effects [45]. Besides, the significant drug resistance and allergic reactions have also limited their long-term clinical applications [46-48]. Therefore, chemical antitumor drugs with low toxicity and high efficiency are an urgent issue for pharmaceutical companies.

Alkylating agents were one of the earliest classes of drugs for cancer treatment are mainly used for chronic lymphocytic leukemia and malignant lymphoma [49], which could generate a carbocation or other compound with an electrophilic group in vivo [50]. These reactive electrophilic species can covalently combine with electron-rich groups (e.g., amino, sulfhydryl, hydroxyl, carboxyl, and phosphate) in biological macromolecules (e.g., DNA, RNA, and enzymes) in cells [51-53]. This combination would cause loss of biological macromolecule activity or cleavage of DNA molecules, resulting in death of tumor cell and antitumor activity [54-58].

Antimetabolites are a class of drugs that affect the biosynthesis of nucleic acids [59], which
Molecular targeted drugs are often targeted at key enzymes in cell signaling pathways involved in tumor cell differentiation and proliferation, also screen for low-toxic, highly potent, and specific small molecule compounds that selectively act on specific targets [80-82]. It was first used clinically in an antitumor small molecule compound with a single kinase target, which easily produces drug resistance with a narrow therapeutic range [83]. Most solid tumors are multi-link and multi-target. Multinomial integration analysis that are essential tools for stratifying patients according to risk factors provide insights to use more targeted and individualized therapeutics (Figure 3). Blocking a certain target or receptor does not need to block the signal transduction of all cells, so multi-kinase targeting represent a new development direction of tumor-targeted therapeutic [84], including targeted drugs that inhibit tumor angiogenesis, protein tyrosine kinase inhibitors, and mammalian target of rapamycin (mTOR) inhibitors [85].

Targeted drugs that inhibit tumor angiogenesis include inhibit vascular endothelial growth factor (VEGF) such as bevacizumab for the treatment of NSCLC, panitumumab, cetuximab, trastuzumab, and some other drugs [86-88]. There are also targeted drugs inhibit angiogenesis directly such as endostatin and angiostatin, the two endogenous tumor neovascular inhibitors that inhibit tumor angiogenesis, induce tumor cell apoptosis, prevent tumor invasion and metastasis by inhibiting the growth of tumor endothelial cells [89]. Both drugs inhibit angiogenesis directly, being used in clinical practice in China [90].

Sorafenib is a multi-target inhibitor inhibit targets for Fms-like tyrosine kinase, c-KIT, platelet-derived growth factor receptor, and Raf/MEK/ERK signaling pathways [91-93]. Acting on multiple targets can not only inhibit tumor cell growth and differentiation but also inhibit tumor neovascularization [94] and improve treatment efficiency, so it can be used for the treatment of NSCLC and liver cancer [95].

Mammalian target of rapamycin (mTOR) inhibitors have been used as immunosuppressants for more than 10 years clinically [96], which is a serine/threonine protein kinase involved in regulating cell proliferation, growth, and metabolism [97, 98].

Other targeted antitumor drugs such as histone deacetylase inhibitors mainly control gene

The anticancer mechanism of platinum antitumor drugs can be divided into four steps: transmembrane transport, hydration dissociation, targeted migration, and action on DNA, which may cause DNA replication disorders, thereby inhibiting the division of cancer cells [71-73]. Preclinical studies have shown significant inhibitory effects on colorectal tumor cell lines and cisplatin-resistant cell lines, and significant synergistic effects with 5-FU [74-76]. Nidalaplatin is more effective than isodose cisplatin in the head and neck, testis, lung, esophagus, bladder, ovary, and cervical tumors, while digestive tract reaction and nephrotoxicity are mild [77-79].

Molecularly targeted drugs are often targeted at key enzymes in cell signaling pathways in-
expression by changing the histone acetylation degree, then changing the chromatin structure [99], which could induce tumor cell growth arrest, differentiation, and apoptosis to treat tumors [100]. For example, the vorinostat of Merck was the first histone deacetylase inhibition
Am J Cancer Res 2021;11(6):2386-2400

Discovery of small molecule drugs

Figure 4. Status of proteins that participate in the apoptotic pathway in cancer. An overexpression of anti-apoptotic proteins has been reported, as well as a downregulation of pro-apoptotic proteins that participate in the mitochondrial apoptotic pathway and in the TNF receptor pathway. It has been suggested that the dysregulation of these proteins induces resistance to apoptosis in different therapeutic approaches.

Genetic engineering

At the end of the 20th century, a series of significant discoveries in cell and molecular biology promoted the biomedical technology development and many technological breakthroughs [102] including the found of wild-type tumor suppressor genes, suicide genes, antdrug resistance genes and antisense oligonucleotides, and tumor genetically engineered bacteria tumors [103-105]. For example, Herceptin is a recombinant DNA-derived humanized monoclonal chimeric anti-p185HER-2 antibody [106] that can specifically bind to HER-2, downregulate it’s gene, antagonize the growth-promoting effects of it’s family, and mediate antibody-dependent cytotoxicity and anti-angiogenesis [107]. G3139 is an antisense oligo-
nucleotide drug against Bcl-2 [108, 109]. The renewal of these technologies have led to radical treatments for cancer (Figure 5).

In recent years, the development of molecular biology technology has been rapidly changed [110]. New cancer vaccine have become the focus, including genetically engineered cancer vaccines. Studies have shown that genetically modified tumor cells can kill cancer cells efficiently [111]. At present, the clinical application of cancer vaccines mainly focuses on the treatment of lung cancer, malignant melanoma, colon cancer, and certain hematological tumors [112, 113]. Therefore, the use of appropriate anticancer drugs for combination and sequential chemotherapy to achieve the goal of curing cancer or prolonging life is an optimized protocol.

Nanotechnology

Nanoparticles refer to particles between 1 and 100 nm in size, which have strong adsorption capacity, large surface area, high catalytic efficiency, and high surface reactivity [114]. It is a new way to deliver anticancer drugs. Particles >200 nm in tissue are easily phagocytized by...
the phagocytic system, whereas magnetic particles <100 nm are more easily adsorbed and deposited at a lower rate, facilitating diffusion to tissues are widely used in antitumor drugs [115]. The properties exhibited by nanomaterials indicate anopolymer material showed broad anticancer application.

Other ways

With the further research of physiological and biochemical mechanisms, some drugs known as prototype drugs have achieved great success in medical effects and in the pharmaceutical market [117]. Many drugs with intellectual property rights have emerged, and those drugs with the same efficacy are called “me-too” drugs [118], the research of it is to find similar chemical structures that are not protected by patents [119]. Researchers change local chemical structures, increase water solubility or fat solubility, and bioavailability [120]. Those drugs would cause metabolic transformation in vivo, prolonging the duration of action, which are sometimes better than the original drug, reducing side effects and adverse reactions to some extent [121]. For example, Melphalan (sarcolysin), with phenylalanine as the carrier, has a better effect on malignant tumors [122]. Formylmerphanal is obtained by subjecting NH2 to formylation on the basis of melphalan [123], comparing with sarcolysine, it has higher therapeutic index and lower toxicity [124]. These drugs have followed the development ideas, mechanism of action, and targets of innovative drugs [125], and have modified the listed drugs in chemical structure, circumventing patent infringement with low research difficulty, low investment, and low risk. It is a way researching on new drugs, and it is also a shortcut to create a transition [126].

Old drugs refer to drugs that have been put on the market for clinical application and are known to everyone, Basedon previous research and development, detailed molecular structure, mechanism of action, and safety information [127]. “Me-too” drugs means shortening the development cycle of small molecule drugs, reducing risks, and increasing the success rate of small molecule drug development, enabling faster entry into clinical trials and rapid phase II clinical trials [128]. The assessment is reported to save approximately 40% of the cost and shorten the development cycle to 3 to 12 years [129, 130].

Challenges and opportunities

Since the 20th century, people haven’t paid much attention to oncology drug research. Traditional cytotoxic drugs are still the main body of cancer drug therapy. However, with the development of molecular oncology and molecular pharmacology, the nature of tumor is gradually being clarified. The application of advanced technologies such as large-scale rapid screening, combinatorial chemistry, and genetic engineering have accelerated the drug development process [131, 132].

However, at present, the development of small molecule drugs has reached a bottle neck, which is not only reflected in the floating number of new drugs on the market, but also in the increasing number of pharmaceutical R & D enterprises invest without breakthrough. For small molecule drugs, it is a matter of time to catch up or surpass. In the next few decades, the market share of large molecule drugs will be higher, gradually surpassing small molecule drugs but does not mean that small molecule drugs will disappear. It just means that such drugs will start to move forward steadily rather than speedily [133-135].

Conclusion

Although therapeutic drugs have been discovered by this traditional method, there are still problems such as unpredictability, blindness, and resource inefficiency. When life sciences enter the post-genome era, scientists will discover new genes from a large number of gene sequencing results, delve into their functions and regulatory networks, and improve the quality and efficiency of innovative drug research through a large number of bioinformatics libraries, compound information libraries and biochips.

Acknowledgements

This study was supported partly by grants from the National Natural Science Foundation of China (81772932, 81972214, 81472202 and 81302065), Shanghai Natural Science Foundation (20ZR1472400), Natural Science Foundation of Hunan Province of China (2018JJ4-
Disclosure of conflict of interest

None.

Address correspondence to: Wen Li, National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China. E-mail: liwendream@163.com; Da Fu, Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 36 Yunxin Road, Shanghai 200072, China. E-mail: fu800da900@126.com

References

Discovery of small molecule drugs

[74] Tsai YC, Zeng T, Abou-Kheir W, Yeh HL, Yin JJ, Lee YC, Chen WY and Liu YN. Disruption of ETV6 leads to TWIST1-dependent progression and resistance to epidermal growth factor receptor tyrosine kinase inhibitors in prostate cancer. Mol Cancer 2018; 17: 42.

[82] Rauth S, Karmakar S, Batra SK and Ponnusamy MP. Recent advances in organoid development...
Discovery of small molecule drugs

on hepatic cancer stem cells and primes a potent antitumor T cell response induced by interleukin-12. Mol Ther 2018; 26: 2738-2750.

[125] Murad JP, Tilakawardane D, Park AK, Lopez LS, Young CA, Gibson J, Yamaguchi Y, Lee HJ, Kennewick KT, Gittins BJ, Chang WC, Tran CP, Martinez C, Wu AM, Reiter RE, Dorff TB, Forman SJ and Priceman SJ. Pre-conditioning modifies the TME to enhance solid tumor CAR T cell efficacy and endogenous protective im-
Community. Mol Ther 2021; S1525-0016: 00127-1.