Erratum

SPOP targets oncogenic protein ZBTB3 for destruction to suppress endometrial cancer: Am J Cancer Res. 2019; 9(12): 2797-2812

Xiaofeng Jin¹, Jian Wang¹, Qian Li¹, Hui Zhuang¹, Jianye Yang¹, Zihan Lin¹, Ting Lin¹, Zeheng Lv², Liliang Shen³, Chunhong Yan⁴, Jingfei Zheng⁴, Jie Zhu⁵, Zhaohui Gong¹, Chenji Wang⁶, Kun Gao²

¹Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China; ²Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200090, China; ³Department of Urology, Yinzhou Renmin Hospital Affiliated to Medical School of Ningbo University, Ningbo 315040, China; ⁴Department of Obstetrics and Gynecology, Yinzhou Renmin Hospital Affiliated to Medical School of Ningbo University, Ningbo 315040, China; ⁵Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Ningbo Medical Center of Lihuili Hospital of Medical School of Ningbo University, Ningbo 315048, China; ⁶State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China

Received January 12, 2021; Accepted February 8, 2021; Epub April 15, 2021; Published April 30, 2021

We recently found a mistake in Figure 5C and 5D, the pictures of colony formation of “sh-ZBTB3#1” in the Figure 5C and “EV+sh-ZBTB3#1” in the Figure 5D were misused. The corrected Figure 5D is shown below. The authors declare that this correction does not change the results or conclusions of this paper.

Address correspondence to: Xiaofeng Jin and Zhaohui Gong, Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China. E-mail: jinxiaofeng@nbu.edu.cn (XFI); gongzhaohui@nbu.edu.cn (ZHG); Chenji Wang, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China. E-mail: chenjiwang@fudan.edu.cn; Kun Gao, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200090, China. E-mail: kungao@tongji.edu.cn
Figure 5. SPOP suppresses cell proliferation, migration and invasion partially dependent on ZBTB3. (A) Western blot (left panel) and Cell proliferation assay (right panel) of ECC-1 cells infected with lentivirus expressing the indicated shRNAs. Standard deviation (S.D.) of at least three independent experiments is shown to indicate statistical significance. *P < 0.05. (B) Western blot (left panel) and Cell proliferation assay (right panel) of ECC-1 cells infected with empty vector or lentivirus expressing FLAG-SPOP-G75R in combination with control shRNA or ZBTB3-specific shRNAs. Data are shown as means ± SD (n=3). *P < 0.05. (C) Cell colony formation assay of ECC-1 cells infected with
SPOP suppresses endometrial cancer

lentivirus expressing the indicated shRNAs. All data shown are mean values ± SD from three replicates. *P < 0.05.

(D) Cell colony formation assay of ECC-1 cells infected with empty vector or lentivirus expressing FLAG-SPOP-G75R in combination with control shRNA or ZBTB3-specific shRNAs. Cell migration (E) and invasion (F) assay of ECC-1 cells infected with lentivirus expressing the indicated shRNAs. Data are shown as means ± SD (n=3). *P < 0.05. (G, H) Cell migration (G) and invasion (H) assay of ECC-1 cells with lentivirus expressing FLAG-SPOP-G75R in combination with control shRNA or ZBTB3-specific shRNAs. Data are shown as means ± SD (n=3). *P < 0.05.