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Figure 3. Combination of HS10241 and HS10160 induces formation of double strand DNA breaks and eliminate cancer cell synergistically. A-D. Double strand 
DNA breaks are indicated by measuring γ-H2AX foci through the use of immunofluorescence staining and confocal microscope. Cells indicated were treated with 
HS10160 (10 µM) and HS-10241 (10 µM) alone or in combination for 18 h before immunofluorescence staining. Representative images of γ-H2AX are shown. Per-
centages of treated cells containing γ-H2AX foci (γH2AX positive) were summarized from counting 100 cells in each samples. Cells treated with 20 mM H2O2 for 20 
min were used as positive control of γH2AX induction. Histograms shown represent mean and standard deviations among 3 repeats. E-H. Synergism was assessed 
by the Chou-Talalay method. Cells were treated with various concentrations of HS10241 and HS10160 either alone or in combination. Cell survival is measured by 
using MTT assay. The combination index (CI) for each pair of agents in each cell line were calculated and plotted by using the Compusyn software.
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un-repaired DNA breaks [43]. To investigate 
whether the combination of HS-10241 and 
HS-10160 enhances the burden of un-repaired 
double-strand breaks in TNBC and HGSOC 
cells, we examined γH2AX foci by immunofluo-
rescence staining in cells treated with 
HS-10160, HS-10241, or the combination. In 
these experiments, TNBC and HGSOC cells 
were treated with 20 mM H2O2 to verify their 
capability of γH2AX induction in response to 
severe DNA damages. As expected, all cells 
treated with H2O2 showed positive H2AX foci 
signaling in a majority of the cells (Figure 3A-D, 
bottom rows and white histograms). γH2AX was 
detected only in a small population of cells 
treated with either HS-10160 or HS-10241 
alone (around 5% in TNBC cells and 2% in 
HGSOC cells), indicating that both inhibitors 
cannot induce significant double-strand breaks 
in a majority of the treated cells (Figure 3A-D, 
second and third rows, blue and green histo-
grams). However, the combination of HS-10160 
and HS-10241 induced substantially more 
γH2AX formation in TNBC cells (by more than 
50%) and higher γH2AX positive population in 
HGSOC cells (around 10%) (Figure 3A-D, fourth 
row and red histograms). 

We further determined the synergism of HS- 
10241 and HS10160 in both TNBC and HGSOC 

160 has synergistic cell killing effects in the 
TNBC and HGSOC cells tested. 

PARP1 p-Y907 as biomarker for HS-10160 and 
HS-10241 combination treatment in TNBC and 
HGSOC cells

Previous publication indicates that PARP1 
Y907 is phosphorylated by p-MET, and the 
PARP1 p-Y907 has lower affinity to PARPi than 
Y907 un-phosphorylated PARP1 and has higher 
efficiency in mediating DNA damage repair 
[34]. Therefore, PARP1 p-Y907 is a suitable bio-
marker for indicating p-MET induced PARPi 
resistance in TNBC [34]. To examine whether 
PARP1 p-Y907 can also be a biomarker of MET-
mediated PARPi resistance in HGSOC and the 
potential of using HS-10241 to overcome it, we 
measured H2O2 induced PARP1 p-Y907 forma-
tion and its reduction caused by HS-10241 
treatment in TNBC and HGSOC cell lines. By 
using Western blotting, we found that H2O2 can 
induce PARP1 p-Y907 in both HGSOC lines test-
ed (Figure 4A-D). As expected, the use of 
HS-10241 effectively inhibits p-MET as well as 
decreases PARP1 p-Y907 in both TNBC and 
HGSOC cells (Figure 4A-D). These data suggest 
that PARP1 p-Y907 is also mediated by MET  
in HGSOC. Further, our data suggest that 
HS-10241 is potent for overcoming MET-

Figure 4. HS10241 suppresses PARP1 p-Y907 in TNBC and HGSOC cells. 
Cells were treated with either 5 µM or 10 µM HS10241 (as indicated) for 
3 h before 20 mM H2O2 treatment. Cells were then harvested for detecting 
PARP p-Y907 and PARP1 expression by using Western blotting analysis. Ac-
tin were used as protein quantity loading control among different samples. 

cell lines using the Chou-
Talalay combination index (CI) 
method to. In general, a CI in 
the range of 0.8-1.2 indicates 
additive effect between inhibi-
tors; < 0.8 indicates synergism 
between inhibitors; and > 1.2 
represents antagonistic effect 
between inhibitors [44]. Our 
data showed that in MDA-
MB-231 and DOV13 cells, the 
CI was lower than 0.3 at con-
centrations that killed more 
than 40% of the cells (Fa > 0.4) 
(Figure 3E, 3G). In BT-549 
cells, the CI was generally 
between 0.5-1 with different 
cell killing effects (Fa 0.05-
0.95; Figure 3F). In OVCA433 
cell, CI ranged from 0.7 to 0.3 
with increasing cell killing 
effects (Fa 0.5-0.95; Figure 
3H). Taken together, our data 
demonstrated that the combi-
nation of HS10241 and HS10- 
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induced PARPi resistance in both TNBC and 
HGSOC.

Discussion

In the current study, we specifically chose PARPi 
and METi developed by the same pharmaceuti-
cal company for this study as this strategy may 
facilitate the translation process from research 
institute to clinical trial studies. We confirmed 
that, compared to BRCA mutated, PARPi-sen- 
sitive-SUM149 cell, the cell lines we chose for 
this study are resistant to HS10160 (Figure S3). 
However, the sensitivity of the cells to HS10241 
are similar (Figure S4). In this study, we con-
firmed that HS-10160 inhibited PARylation of 
PARP1 and HS-10241 inhibited MET activa- 
tion effectively in both non-BRCAm TNBC and 
HGSOC cells (Figures 1 and 2). By treating the 
cancer cells with the inhibitor alone or in combi-
nation, we concluded that combination of HS- 
10160 and HS-10241 is suitable to overcome 
MET-induced intrinsic PARPi resistance by dem-
onstrating the synergistic effect between these 
two drugs (Figure 3). Moreover, our data indi-
cated that PARP1 p-Y907 has the potential to 
serve as biomarker to stratify patients with 
non-BRCAm TNBC and HGSOC for this combina-
tion treatment (Figure 4). 

In preclinical studies, BRCAm is not the only fac-
tor affecting PARPi sensitivity. The sensitivity to 
PARPi can be independent of BRCAm status 
[45]. The observed synergism in BRCA wild-
type cancer cells reported in this study is con-
sistent with our previous findings that MET-
mediated resistance to PARPi is independent of 
BRCA protein expression [34, 35]. Expanding 
from our previous findings on the use of METi to 
overcome PARPi resistance in TNBC, we dem-
onstrated in this study that PARP1 p-Y907 can 
be a biomarker to indicate MET-mediated PARPi 
resistance in both cancer types tested. Taking 
into consideration of the reported PARP1 
p-Y907 as a biomarker in indicating PARPi 
resistance in liver cancer [35], we proposed 
that PARP1 p-Y907 can serve a biomarker that 
can be applied to multiple cancer types as well 
as a reference guide for precision METi/PARPi 
combination therapy.

Using METi as an example, our findings sug-
gested that PARPi can be applied to treat TNBC 
and HGSOC in combination with kinase inhibi-
tor to increase double-strand DNA damage bur-

dens in cancer cells and thus enhance the 
therapeutic efficacy. Since MET is not the only 
oncogenic kinase in human cancers [46], the 
combination of PARPi with other kinase inhibi-
tors may be potential therapeutic strategies in 
both preclinical and clinical studies [47]. 
However, only a few PARPi and kinase inhibitor 
combinations have moved into Phase II/III clini-
cal trials swiftly [47]. Therefore, biomarkers are 
needed to evaluate the contribution of specific 
kinase activation in PARPi resistance in order 
to better stratify patients. With the urgent need 
of precision targeted therapy, we demonstrated 
that MET and PARP1 p-Y907 as a model in 
which a single biomarker can be applied to mul-
tiple cancer types. 
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Figure S1. H2O2-induced PARylation is inhibited by olaparib. MDA-MB-231 cells were treated with olaparib at indi-
cated concentration for overnight and subjected to 20 mM H2O2 treatment for 20 min. Cells were then harvested for 
Western blotting analysis for detecting PARylation (PAR) and PARP1 expression. Actin were used as protein quantity 
loading control among different samples.

Figure S2. H2O2-induced MET activation is inhibited by crizotinib. MDA-MB-231 cells were treated with crizotinib at 
indicated concentration for 3 h before subjected to 20 min, 20 mM H2O2 treatment. Cells were then harvested for 
Western blotting analysis for detecting p-Y1234/1235 MET (p-MET) and MET expression. Actin were used as protein 
quantity loading control among different samples.
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Figure S3. Cytotoxicity of HS-10160 in TNBC and HGSOC. Cells indicated were treated with different concentrations 
of HS10160 for 3 days before cell survival were measured by using MTT assays. Data from un-treated group were 
used as 100% survival to normalize survival rate in response to different HS-10160 concentrations. Mean ± S.E.M. 
were plotted and interpolated curve is generated by using GraphPad Prism 8 with asymmetric sigmoidal curve.
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Figure S4. Cytotoxicity of HS-10241 in TNBC and HGSOC. Cells indicated were treated with different concentrations 
of HS10241 for 3 days before cell survival were measured by using MTT assays. Data from un-treated group were 
used as 100% survival to normalize survival rate in response to different HS-10160 concentrations. Mean ± S.E.M. 
were plotted and interpolated curve is generated by using GraphPad Prism 8 with asymmetric sigmoidal curve.


