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and normal fibroblasts at doses of 0.8, 1.6 and 
2 μmol, relative to control and at doses of 0.2 
and 0.4 μmol (Figure 5B). These findings sug-
gest that GSK864 not only attenuated the pro-
liferation of IDH1 mutant cancer cells, but also  
fibroblasts such as those found in cancer stro-
ma. Thus, GSK864 attenuation of vascular-
endothelial tube formation (Figure 3), revers-
able by IDH mutant 2HG to which GSK864 
inhibits, may represent a novel me-chanism by 

alone stimulates vascular-endothelial tube  
formation, and may directly activate angioge- 
nic pathways in cancer stromal cells (Fig- 
ure 6). These findings enrich previous work  
that established the concept of the tumor 
microenvironment and metastasis via va- 
scular invasion [5, 32, 38], and provide clues 
that the IDH mutant tumors may undergo 
metastasis by augmenting oncogenic angio- 
genesis.

Figure 4. Representative images and quantification of vascular-endothelial tube formation in the fibrosarcoma sec-
retome and 2HG in endothelial basal medium. A: Abundant vascular-endothelial tube formation induced by the 
fibrosarcoma secretome. B: 2HG in endothelial basal medium induced similar vascular-endothelial tube formation. 
Scale bars: 400 μm. C: Quantification of vascular-endothelial tube lengths in the fibrosarcoma secretome and 2HG 
in endothelial basal medium. Rel.: relative; s.e.: standard error; pos.: positive; ctrl.: control; n=3 independent biologi-
cal samples per group; n.s.: no (statistical) significance.

Figure 5. Cell proliferation. A: 2-hydroxyglutarate (2HG) stimulated human 
fibrosarcoma cell (HT-1080) proliferation beyond its baseline in a dose-
dependent manner. s.d.: standard deviation. n=5 independent biological 
samples. B: GSK864 inhibited the proliferation of both human fibroblasts 
and human fibrosarcoma cells (HT-1080) in a dose-dependent manner. s.d.: 
standard deviation. Proliferation of human fibrosarcoma cells (HT-1080) and 
fibroblasts at 0.8, 1.6 and 2 μmol GSK864 concentrations were significantly 
lower than control (ctrl) and 0.2 and 0.4 μmol (P < 0.001; n=5 independent 
biological samples per group).

which GSK864 or other small 
molecules may be harnessed 
to target cancer stromal cells.

Discussion

The present data, as summa-
rized in Figure 6, are novel 
and absent in literature. Our 
findings provide experimental 
evidence, for the first time, for 
how IDH mutant cancer secre-
tome and/or oncometabolite 
impacts cancer stromal cells. 
An IDH mutant oncometabo-
lite, 2-hydroxyglutarate (2HG), 
is shown to stimulate vascu-
lar-endothelial genesis in con-
junction with the fibrosarco-
ma secretome, despite pre- 
emptive inhibition of IDH1 
mutation with GSK864, a 
small-molecule IDH1 inhibitor, 
suggesting that 2HG may  
augment oncogenic angiogen-
esis via paracrine signaling 
(Figure 6). In parallel, 2HG 
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These findings suggest that 2HG’s paracrine 
effects to stimulate oncogenic angiogenesis 
and its direct effects are not mutually exclu-
sive. The greater capacity of vascular-endothe-
lial genesis by 2HG supplemented in the 
GSK864-treated fibrosarcoma secretome than 
2HG alone in basal medium is likely due to 1) 
greater 2HG concentration that is derived from 
both exogenous 2HG added (12 μmol) plus 
endogenous 2HG produced by fibrosarcoma 
cells. Equivalent vascular-endothelial tube for-
mation induced by the cancer secretome and 
2HG alone in basal medium provides experi-
mental evidence that 2HG may stimulate onco-
genic angiogenesis by directly acting on vascu-
lar-endothelial cells and/or through multiple 
angiogenic pathways that may include HIF1α 
and/or VEGF. HIF1α signaling was proposed to 
promote angiogenesis by IDH mutant cancer 
cells [30], and recently 2HG was shown to acti-
vate aerobic glycolysis and glutamate metabo-
lism through HIF1α [26]. VEGF is a pivotal 
angiogenic factor in tissue development and 
multiple malignancies [5, 32, 38], but its roles 
in IDH mutant tumors are elusive [30]. Whether 
2HG directly activates VEGF signaling, via 
HIF1α or other paracrine factors secreted from 
stromal cells warrants new investigations 
(Figure 6). Additionally, the chemokine receptor 

ing therapeutics that, for example, targets vas-
cular-endothelial cells. Our finding of GSK864 
inhibition of vascular-endothelial genesis pro-
vides additional clues for targeting cancer stro-
mal cells. GSK864 inhibits both wild-type  and 
mutant IDH1 isoforms of cancer cells [24, 28]. 
IDH mutations are heterozygous and involve 
arginine substitution to histidine, yielding a 
wild-type and mutant heterodimer [17, 21, 33, 
45]. GSK864 is an allosteric IDH1 inhibitor that 
attenuates intracellular 2HG production by 
inactivating wild-type and mutant IDH1s [24, 
28]. GSK864’s half life in human and mouse 
liver cells is in the range of 20-70 min [24, 42]. 
Hence, most of the supplemented GSK864 in 
the fibrosarcoma secretome must have lost its 
bioactivity during the time course of vascular-
endothelial tube formation for 24 hrs. Thus, 
2HG’s efficacy in stimulating vascular-endothe-
lial genesis in the GSK864-treated cancer sec-
retome is likely due to its own merit, and prob-
ably not substantially affected by GSK864. 
However, the mechanisms by which 2HG or 
GSK864 affects vascular-endothelial cells or 
other cancer stromal cells are elusive and war-
rant investigations.

Several anti-2HG small molecules have been 
FDA-approved for the treatment of gliomas and 

Figure 6. Summary of the present data and future studies. A: IDH mutant 
cancers produce 2HG, an oncometabolite that transforms normal cells into 
malignant cells via histone demethylation and epigenetic dysregulation. 
However, whether 2HG or IDH mutations impact cancer stroma is elusive. 
Our data show that 2HG alone or in the cancer secretome stimulates vas-
cular-endothelial tube formation, as a surrogate model for in vivo oncogenic 
angiogenesis and metastasis. B: Vascular sprouts: vertically oriented cancer 
blood vessels via oncogenic angiogenesis. C: Horizontal blood vessel: native 
host vasculature. 2HG may activate HIF1α and/or VEGF signaling.

CXCR7 was immuno-localized 
to vascular endothelium of 
clinical IDH-mutant glioma 
samples, implicating CXCR7 
as another potential pathway 
for IDH mutation induced 
oncogenic angiogenesis [3].

Cancer cells are genetically 
unstable and undergo repeti-
tive mutations [33, 40, 43], 
which underscores the diffi-
culty in developing novel ther-
apeutics against malignant 
cells, and accounts for some 
of cancer treatment relapse 
and tumor recurrence. For 
example, IDH mutant tumors 
have begun to show resis-
tance to some of the novel 
small-molecule inhibitors de- 
veloped such as ivosidenib 
(AG-120) [11]. Contrastingly, 
cancer stromal cells possess 
relative genetic stability [33, 
40, 43], and therefore are 
attractive targets for develop-



Vascular-endothelial response to IDH1 mutant secretome and metabolite

130	 Am J Cancer Res 2019;9(1):122-133

acute myeloid leukemia [43]. However, there  
is no effective biological treatment for sarco-
mas including fibrosarcoma that is the current 
model system. The insight unveiled by our find-
ings regarding 2HG stimulation and GSK864 
inhibition of vascular-endothelial tube forma-
tion in the fibrosarcoma secretome serves as a 
model system for investigating molecular path-
ways and for developing novel sarcoma thera-
peutics via small molecules and/or vaccines. 
Further understanding of how T cells respond 
to IDH mutant fibrosarcoma may also aid in the 
development of enhanced tumor surveillance 
and novel therapeutics. For example, 2HG 
accumulation in the IDH mutant glioma activat-
ed CD8+ T lymphocytes via the HIF1α pathway, 
and enhanced in vivo cancer cell proliferation 
[41]. In immortalized human astrocytes and 
syngeneic mouse glioma models, IDH1 muta-
tion or 2HG impaired CD8+ T cell accu- 
mulation and CXCL10 chemotaxis [16, 41]. 
Novel peptides activated IDH mutation-specific 
CD4(+) T-helper-1 cell responses in patient 
samples of IDH1-mutant gliomas [36]. Little is 
known in literature regarding biological thera-
pies for sarcomas.

The present study has a number of limitations. 
A total of three well-established cell lines were 
utilized. Although these cell lines are broadly 
adopted in cancer biology, patients’ primary 
tumor cells would be of interest for devising 
patient-specific therapeutics via, for example, 
CRISPR/Cas9 or other gene editing tools. 
Stromal cells utilized in the present study are 
dermal fibroblasts and vascular-endothelial 
cells that have been commonly adopted in can-
cer biology, rather than from the patients’ pri-
mary cancer stroma cells. Our future work will 
profile patients’ cancer stromal cells via 
RNASeq and single-cell RNASeq, followed by 
utilization of patient’s cancer stromal cells for 
the development of patient-specific molecular 
therapeutics. Our future experiment will also 
profile the proteome of the fibrosarcoma secre-
tome in complement to RNASeq analysis. 
Within these constraints, our findings have 
unveiled several novel features of vascular-
endothelial response to the cancer secretome 
and to 2HG, an IDH mutant oncometabolite. 
These data serve as an in vitro surrogate model 
for manipulating oncogenic angiogenesis for 
the benefit of understanding cancer biology 

and developing novel therapeutics, especially 
by targeting the cancer microenvironment.
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