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(Figure 1B) possesses much less antitumor 
activity than the water-insoluble lactone form of 

CPT (Figure 1A). Clinical trials for about one 
thousand patients with colorectal, head-&-

Figure 1. The chemical structure of CPT analogues and non-CPT compounds. 
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neck or bladder cancer in China using carboxyl-
ate form of CPT (CPT sodium salt) showed some 
positive results [8]. However, results from US 
trials with the carboxylate form of CPT appeared 
to be not as promising [4-6]. This inconsistency 
could be attributed to the fact that the US  
clinical trials included only patients that had 
already shown resistance to other treatment. 
Nevertheless, the lack of consistent efficacy of 
using the carboxylate form of CPT in clinical tri-
als drove researchers to focus on the CPT lac-
tone form for development. However, clinical 
trials with CPTs were essentially discontinued 
in the 1970s due to the inability to resolve the 
water-insoluble property of CPT in the lactone 
form (the form used in references throughout 
this article), low response rates [4-6] and high 
toxicity (e.g. myelosuppression, gastrointesti-
nal toxicities, and hemorrhagic cystitis) [9, 10], 
as well as an unclear CPT mechanism of action. 

Discovery of mechanism of action (MOA) for 
CPT

Although CPT clinical trials ended in the 1970s, 
its mechanism of action studies continued to 
be an area of interest. The husband-and-wife 
team of Drs. Marshall and Susan Horwitz at 
Albert Einstein College of Medicine, as well as 
others, made the early findings related to the 
CPT mechanism of action. Their studies rev- 
ealed that CPT inhibits DNA and RNA (including 
ribosomal RNA) synthesis and induces DNA 
damage [11-15]. These scientists observed 
that CPT is most potent during the S-phase of 
the cell cycle and predicted that the DNA repli-
cation fork must play a role in CPT-induced cell 
death [15]. Later studies indicated that CPT 
arrested cell cycle at both S and G2 phases, 
which were needed for CPT cytotoxicity [16, 
17].

During the early 1980s, a number of unrelated 
DNA damaging agents were being explored clin-
ically for the treatment of both cancer and bac-
terial infection. Studies revealed two different 
classes of DNA damaging drugs: the quinolone 
antibiotics (e.g. cinoxacin, nalidixic acid, cipro-
floxacin) and the podophyllotoxin derivatives 
(etoposide, teniposide). Both classes of drugs 
shared the same mechanism of action: inhi- 
bition of topoisomerase II (Top2), an enzyme 
active during S-phase that assists with DNA 
replication (reviewed in [18]). Noting that CPT is 
also most active during the S-phase and that 

the DNA replication fork was believed to be 
necessary for CPT-induced cell death, Dr. Leroy 
F. Liu’s team at Johns Hopkins, in collaboration 
with Smith Kline & French Laboratories in 
Philadelphia, set out to test whether CPT could 
be an inhibitor of Top2 [19]. To their surprise, 
even 125 µM CPT failed to inhibit Top2-
dependent DNA cleavage [19]. However, when 
they tested other enzymes associated with 
DNA replication, they observed potent and 
dose-dependent induction of DNA damage in 
the presence of topoisomerase I (Top1) [19].

Top1 orthologues are found in all eukaryotes, 
and appear to be an essential enzyme during 
development in a wide variety of animals. For 
example, knocking out TOP1 is embryonically 
lethal in both Mus musculus [20] and Drosophila 
melanogaster [21]. During the process of DNA 
replication and transcription, Top1 is responsi-
ble for relaxing supercoiled DNA. Specifically, 
Top1 first cut supercoiled DNA to introduce a 
single-strand break, or “nick”, into the DNA and 
covalently binds to the nicked 3’-end DNA and 
allows the 5-nicked strand to rotate around the 
intact strand in a controlled manner; after rota-
tion Top1 re-ligates the nicked strand [22]. This 
Top1-DNA complex during DNA replication is 
commonly referred to as the “Top1 covalent 
complex”, owing to the covalent bond between 
Top1 and the nicked strand (reviewed in [23]).

CPT and CPT analogues function by inhibition of 
Top1 activity [24, 25]. In the cell, CPT integrates 
itself into the Top1/DNA covalent complex, 
forming a ternary complex. Both Top1 and DNA 
are required for CPT binding, and CPT does  
not have a significant binding to either in the 
absence of the other [26]. CPT binds to both 
the Top1 enzyme and the intact DNA strand 
through hydrogen bonding, and prevents both 
the re-ligation of the nicked DNA and dissocia-
tion of Top1 from the DNA. During replication, 
this CPT-involved ternary complex acts as a 
roadblock for the replication fork. Collision 
between the ternary complex and the replica-
tion fork results in shear stress upon the intact 
DNA strand, resulting in breakage, DNA double-
strand breaks, and cell death. Interestingly, the 
known target for CPT and its analogues is the 
Top1-DNA complex. However, as mentioned 
above it was demonstrated that CPT affects 
cellular protein, RNA and DNA synthesis [11-
15], which may suggest that CPT could have 
other targets. Yeast cells with deleted TOP1 
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become functionally immune to CPT and its 
analogues [24, 25], and mammalian/human 
cancer cells become resistant to CPTs when 
TOP1 is mutated [27-32] or overexpression of  
a mutant Top1 [33], while events that can 
increase Top1 activity enhance CPT sensitivity 
[34]. While Top1 activity inhibition is a well- 
documented MOA for CPTs and its analogues, 
we present evidence below for CPT and CPT-
derived analogues that have different molecu-
lar targets, and importantly, these targets (but 
not Top1 expression) are involved in their anti-
cancer activity.  

Synthesis of CPT and its derived analogues 

The discovery of Top1 being the molecular tar-
get of CPT [19] further stimulated the research 
interest to synthesize new CPT analogues with 
a hope that new CPT analogues may overcome 
the weakness of CPT (e.g. improved water solu-
bility, better Top1 activity inhibition) and thus, 
enhance antitumor activity. Since the CPT 
structure was available [1], early chemistry 
efforts developed a number of ways to synthe-
size CPT (reviewed in [3]). However, these meth-
ods are not useful for synthesizing CPT ana-
logues. Drs. Wani and Wall’s research team at 
RTI (North Carolina, US) employed a Friedländer 
condensation reaction and developed a much 
more flexible approach for generating CPT or 
CPT analogues by coupling the tricycle CDE 
compound (Figure 1A) to the A ring-relevant 
compound to make the pentacycle CPT or CPT 
analogues [35-39], in which these authors 
resolved the separation of 20 (S) and 20 (R) 
configuration. This is important since the CPT 
or CPT analogues in the 20 (R) configuration are 
found to be functionally inactive [38]. Based  
on the current development of CTP medicinal 
chemistry, it is clear that multiple approaches 
have been developed for the synthesis of CPT 
and its analogues. These CPT synthetic meth-
ods have been optimized over time. For exam-
ple, the broadly used method of coupling the 
tricycle CDE compound to the A ring-relevant 
compound to make CPT analogues through 
Friedländer condensation reaction introduced 
by Drs. Wani and Wall for synthesis of various 
CPT analogues [35-39], based on the early 
studies [40-42], were further developed and 
optimized by Henegar et al in 1997 to fit a ver-
satile and large scale of CPT analogue synthe-
sis [43]. This approach was further developed 
specifically for enantiopure 20 (S)-CPT by Tang 

et al in 2006 [44], and we believe that this 
could also be applied to various 20 (S)-CPT  
analogue syntheses. Li et al summarized vari-
ous CPT and its analogue synthetic methods in 
a review article [45]. These methods or their 
modified methods, especially the Friedländer 
reaction-based approach [44, 45], are practical 
for the efficient synthesis of various CPT an- 
alogues. 

Structure-activity relationship (SAR) of CPTs

The findings from the earlier studies on CPT 
structure-activity relationship (SAR) can be su- 
mmarized as: 1) the E-ring in a lactone form is 
much more potent than the E-ring in a carboxyl-
ate form (Figure 1A versus 1B); 2) the chiral 
center located at position 20 of the E-ring with 
an S-configuration is absolutely required for 
CPT compound activity and the R-configuration 
is inactive [38]; and 3) CPT without A and B 
rings (de-AB-CPT) shows no discernible inhibi-
tion of DNA and RNA synthesis at a µM con- 
centration where CPT reached 50% inhibition. 
Indeed, de-AB-CPT reaching a 20% inhibition of 
DNA and RNA synthesis needs 50 µM concen-
tration [46] and, furthermore, no meaningful 
activity in L1210 carcinoma screen assay at a 
concentration where CPT is quite active [46]. 
This suggests that the A and B rings are im- 
portant for CPT antitumor potential. Together, 
these early findings on CPT SAR studies lay a 
foundation for further chemistry modulation of 
the CPT structure in hopes of discovering CPT 
analogues with better Top1 activity inhibition.

Novel MOAs for CPT and CPT analogues

CPTs’ regulation of gene expression indepen-
dent of Top1

Since Top1 has important functions in gene 
transcription control [23], a critical question in 
the CPT and CPT analogue research field is 
whether CPT or CPT analogues could modulate 
gene expression (e.g. modulate key drug tar-
gets in cancer) independent of Top1 activity 
inhibition by CPT or CPT analogues. In May 
2016, Mabb, et al published an interesting 
study in PLOS ONE [47]. In this study, the 
authors used multiple approaches to knock 
down or delete the Top1 gene (TOP1) in neu-
rons to determine the role of Top1 in topotecan-
mediated gene modulation. These authors 
found that in the presence of Top1, topotecan 
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modulates much more gene expression than in 
the absence of Top1 through both Top1/DNA 
cleavage complex-dependent and -indepen-
dent mechanisms [47]. We analyzed the raw 
data provided in the Table S1 from Mabb, et 
al.’s publication for the topotecan-induced 
38-downregulated genes and 4 upregulated 
genes in the neurons presented with condition-
al knockout (cKO) of TOP1 [47]. We wanted to 
know whether the inhibition or induction of 
these genes by topotecan is Top1-independent 
or due to the incomplete TOP1 cKO. The result 
from the analysis of these topotecan-modulat-
ed genes was described in detail in our recent 
publication [48]. Based on the analysis, our 
conclusion was that the topotecan-downregu-
lated 38 genes and topotecan-upregulated 4 
genes are true Top1-independent events [48]. 
The study clearly indicated that certain CPTs 
(topotecan used in this study) could modulate 
gene expression independent of Top1 function 
[47]. The key point that we want to emphasize 
here is that certain CPTs can inhibit or induce 
gene expression independent of Top1 activity 
inhibition by CPTs. 

We propose that certain novel CPT analogues 
that possess high efficacy and low toxicity in 
treatment of cancer (e.g. FL118, which will be 
reviewed in detail below) may mainly use Top1-
independent mechanisms to deliver their anti-
tumor activity and cancer cell killing [48], while 
inhibition of Top1 activity may mainly be in- 
volved in toxicity to the host as suggested in 
our recent studies [48]. In this regard, it is 
known that Top1 is a ubiquitously expressed 
gene that is essential for mammalian cell prolif-
eration during embryo development, as well as 
human normal tissue and cell renewal over a 
lifetime. Top1 plays a critical role in cellular 
DNA replication, and thus blocking of Top1 
function will result in early embryo lethality dur-
ing development [49] or induces serious toxicity 
in children and adults in various renewal tis-
sues (e.g. hematopoietic toxicity). Due to the 
high hematopoietic toxicity of irinotecan and 
topotecan, during the use of irinotecan or topo-
tecan for cancer patient chemotherapy, periph-
eral-blood stem cell infusion or bone marrow 
transplantation was also used in parallel in 
order to alleviate the intensity of hematopoietic 
toxicity [50-52]. In summary, Top1 is not an 
ideal target for cancer therapeutics. Deve- 
lopment of novel CPT analogues that do not 
use Top1 as a major target, but use other can-

cer proliferation and survival-associated onco-
genes as major targets for anticancer activity 
would be a promising direction for future efforts 
to generate novel CPT analogues with low toxic-
ity (due to low inhibition of Top1 activity) and 
high efficacy (due to targeting cancer-associat-
ed key genes/proteins) for treatment of 
cancer. 

Discovery of the novel CPT analogue FL118

We recently discovered a novel antitumor com-
pound (named as FL118, Figure 1C) using the 
survivin gene expression as a biomarker [53] 
via high throughput screening (HTS) of small 
molecule libraries, followed by hit-to-lead-to-
analogue characterization in vitro and in vivo 
[54]. The logic of using the antiapoptotic sur-
vivin gene expression as a biomarker for drug 
discovery and leading to the finding of FL118 is 
that studies have revealed that survivin is a piv-
otal molecule at the junction of cancer cell sur-
vival, division and apoptosis control [55, 56]. 
Survivin is also a critical factor in the inherent 
and induced drug/radiation resistance for can-
cer during treatment and is involved in cancer 
metastasis [57-63]. This is consistent with a 
potential role of survivin in the latent cancer 
stem cells (CSCs) [64-71]. A role for survivin in 
CSCs is independently revealed by computer 
analysis of the death-from-cancer signature 
genes. The study showed that cancer cells with 
stem cell-like expression profiles possess three 
characteristics: increased expression of inhibi-
tor of apoptosis (IAP) proteins, activated mitotic 
spindle checkpoint proteins, and elevated cell 
cycle control proteins [72]. Accordingly, survivin 
is a key member in the IAP family and possess-
es all three characteristics: apoptosis inhibi-
tion, mitotic/cell division control, and cell cycle 
regulation [55, 56, 73-76]. Therefore, survivin 
is considered as a critical cancer target and is 
important for both highly proliferative cancer 
cells and for latent CSCs. Inhibition of survivin 
expression or function would result in both bulk 
tumor regression and latent CSC elimination; 
thus, avoiding tumor metastasis and/or relap- 
se. FL118 shows exceptional antitumor activity, 
is safe, and works through a MOA of downregu-
lation of multiple cancer-associated oncogenic 
proteins including survivin regardless of the 
presence or absence of Top1 expression in can-
cer cells, as summarized below.

Coincidently, FL118 is a novel CPT analogue 
with a unique chemical structure identical to 

http://www.ajcr.us/files/ajcr0067986suppltab.xlsx


Camptothecin analogues and their molecular targets

2355 Am J Cancer Res 2017;7(12):2350-2394

10, 11-methylenedioxy-20 (S)-CPT. The racemic 
mixture of FL118 (10,11-OCH2O-20(RS)-CPT) 
was synthesized and tested in mouse L1210 
leukemia assays by Drs. Wani and Wall’s re- 
search group in 1980s [36, 37]. Together with 
other CPT analogues, they demonstrated that 
CPT analogues in the “R” configuration are at 
least 10 to 100-fold less active than the corre-
sponding CPT analogues in the “S” configura-
tion either in mouse leukemia assays or in the 
test of Top1 inhibition by cleavable complex for-
mation [38, 39]. Consistent with our finding 
that FL118 possesses exceptional antitumor 
activity, their mouse L1210 leukemia assay 
indicated that 10, 11-methylenedioxy (MD)-20 
(RS)-CPT exhibited a good life prolongation, 
although it was not among the most effective 
CPT analogues [39]. Due to water-insolubility 
and the relative lower efficacy in a mouse tumor 
model, FL118 was never pursued as an anti-
cancer agent toward clinical trials. In our view, 
the 10, 11-MD-20 (RS)-CPT did not stand out 
from other CPT analogues tested then in their 
mouse leukemia life prolongation assay stud-
ies for two reasons. First, they used a racemic 
“RS” mixture, thus decreasing the apparent 
efficacy. Second, 10, 11-MD-20 (RS)-CPT is 
extremely water-insoluble and thus, poor for-
mulation of 10, 11-MD-20 (RS)-CPT would have 
a poor bioavailability in the in vivo mouse 
L1210 leukemia life prolongation test. However, 
we screened FL118 along with other com-
pounds against human tumors in vitro and in 
vivo; we found that FL118 was very active 
against human tumors. In fact, FL118 showed 
inferior antitumor activity to YM155 (Astellas, 
Japan) to inhibit mouse E0771 breast cancer 
cell line-established tumor, but FL118 exhibit-
ed superiority to YM155 in anti-human tumors 
(the Li Lab unpublished observation). This sug-
gests that FL118 prefers to inhibit human 
tumors but not mouse tumors. For testing in 
vivo, our research group at Roswell Park Cancer 
Institute developed a novel formulation for 
FL118 and other linear/arched highly water-
insoluble compounds [77]. Our in vivo studies 
demonstrated that FL118 possesses excep-
tional antitumor activity against colorectal and 
head-&-neck cancer in human tumor animal 
models [54] and can effectively overcome 
human xenograft tumor resistance to irinote-
can (CPT-11, Figure 1D) and topotecan (Figure 
1E) [78], two FDA-approved CPT analogues 
used in the clinic. Given that FL118 is a CPT 

analogue with high antitumor efficacy, we th- 
ought that FL118 might be an effective Top1 
activity inhibitor. However, our Top1-DNA com-
plex biochemical cleavage assay showed that 
even at a 1 µM concentration, FL118 was less 
effective at inhibiting Top1 activity than SN-38 
(active metabolite of irinotecan, Figure 1F) 
[54]. In contrast, FL118 can effectively inhibit 
cancer cell growth at or below nM levels, 
depending on cancer cell types [54].

Issues for CPTs to use Top1 as a target and 
how to avoid them

A problem with CPTs Top1 inhibitors is the CPT 
resistance resulted from the proclivity of CPTs 
to downregulate the expression of Top1 protein 
targets by which the CPTs exert their MOA [79-
82]. Mechanistically, downregulation of Top1 
proteins by CPTs is through ubiquitin/26S pro-
teasome-mediated degradation of Top1 in can-
cer cells [83, 84]. Interestingly, Top1 inhibition 
by CPTs is usually associated with a Top2 ac- 
tivity increase [81, 85], suggesting that Top2 
increase could be a CPTs resistant factor. Thus, 
Top2 may partially do the Top1 work in cancer 
cells, since CPTs are Top1 activity inhibitors but 
not Top2 activity inhibitors, this phenomenon 
would be expected to contribute to resistance 
to CPTs. In fact, the intensity of CPT-induced 
downregulation of Top1 expression is positively 
associated with the intensity of cell resistance 
to CPTs. For example, CPT effectively inhibits 
Top1 expression in the CPT-resistant breast 
cancer cell line BT474, while CPT is unable to 
inhibit Top1 expression in the CPT-sensitive 
breast cancer cell line ZR75-1 [83]. Consistent 
with these observations, it was reported that 
reduced Top1 expression and/or Top1 catalytic 
activity in cancer cells is associated with in- 
creased resistance to CPTs [86, 87], while 
increased Top1 expression in cancer cells sen-
sitizes CPTs [88-90]. Similarly, previous studies 
also revealed that cancer cells become resis-
tant to CPTs when the Top1 gene is mutated 
[27-32]. In this regard, using the Du145 paren-
tal prostate cancer cells (wild type Top1) in par-
allel with Du145-derived two sublines, RC0.1 
and RC1, with Top1 R364H mutations [91], we 
demonstrated that FL118 IC50 is 10-50-fold 
less affected by Top1 mutation in comparison 
with the affected degree in IC50 for CPT, SN-38 
and topotecan [92]. Furthermore, our recent 
studies revealed that the sensitivity of human 
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colorectal cancer xenograft 
tumors to FL118 is indepen-
dent of Top1 expression levels 
[48]. Human xenograft tumors 
with high Top1 expression can 
be resistant to FL118 treat-
ment, while tumors with low/
negative Top1 expression can 
be sensitive to FL118 treat-
ment (Figure 2) [48], which is 
distinct from other CPTs. Th- 
ese observations are consis-
tent with the fact that FL118 
exhibits high in vivo antitumor 
efficacy and effectively over-
comes topotecan and irinote-
can-resistant human tumors 
[78]. 

In summary, these observa-
tions suggest that FL118 does 
not exert its antitumor effects 
through inhibition of Top1 ac- 
tivity; instead, FL118-mediat- 
ed inhibition of Top1 activity 
may mainly be involved in 
FL118-induced hematopoietic 
toxicity as suggested in our 
recent studies [48].

Unique mechanism of actions 
for certain CPTs such as 
FL118

If FL118 does not use Top1 as 
a major target for its antican-
cer activity, then what target(s) 
does FL118 use for its antitu-
mor efficacy? Our studies rev- 
ealed that FL118 selectively 
inhibits the expression of mu- 
ltiple antiapoptotic proteins 
(survivin, Mcl-1, XIAP, cIAP2). 
We found that the inhibition  
of these proteins by FL118 is 
independent of the tumor sup-
pressor p53 status (wild type, 
mutant or null) [54]. This is 
another important feature of 
FL118, because most (if not 
all) DNA damaging drugs are 
ineffective when p53 is mut- 
ated or lost (null). Next, we 
asked whether these gene 
products (survivin, Mcl-1, XIAP, 
cIAP2) are involved in FL118’s 

Figure 2. The sensitivity of colorectalcancer (CRC) xenograft tumors to 
FL118 treatment is not associated with the expression level of Top1: The 
small image insert within each xenograft tumor histogram curve was the ex-
pression of Top1 proteins measured using western blots with Top1 antibod-
ies from two independent commercial sources. Individual xenograft tumors 
were first established from their corresponding CRC cell lines (RKO, LS513, 
LIM2551, SUN-C1, LS411N, Caco-2, SW837, NCI-H747,) by subcutaneous 
injection of 2 million cells at the flank area of SCID mice, respectively. Then 
the established tumors were inoculated into SCID mice at the flank area for 
testing FL118 sensitivity. FL118 treatment was initiated at the time when the 
inoculated individual xenograft tumors reached 100-200 mm3 (designated 
day 0). FL118 was administered with the schedule of weekly × 4 (arrowed) via 
po (per oral) routes at a dose of 10 mg/kg (MTD: maximum tolerated dose). 
Individual tumor curves were derived from the mean tumor sizes ± SD from 
up to five mice. These in vivo experimental studies were performed following 
the mouse protocol that was approved by the Institutional Animal Care and 
Use Committee (IACUC) at Roswell Park Cancer Institute. (Data were adapted 
from our previous publication: Li et al Am J Cancer Res 2017; 7: 370-382). 
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inhibition of cancer cell growth and induction  
of apoptosis. Our studies demonstrated that 
when we genetically overexpress or silence 
these proteins individually, each of these pro-
teins plays a role in FL118-mediated cancer 
cell growth inhibition and apoptosis induction 
[54, 93]. Furthermore, in p53 wild type colorec-
tal cancer cells, FL118 induces p53-dependent 
senescence by promoting MdmX (also called 
Mdm4) ubiquitination and degradation [94]. 
Intriguingly, in the absence of p53, FL118 
exhibits an even stronger ability to inhibit 
colorectal cancer (CRC) cell growth and induce 
apoptosis [94]. We further demonstrated that 
forced expression of exogenous MdmX in HC- 
T116 colon cancer cells further enhances 
FL118 ability to inhibit cell growth and induce 
apoptosis [94]. This suggests that the oncogen-
ic protein MdmX is a unique biomarker and tar-
get for FL118, as well. Mechanistically, the inhi-
bition of MdmX expression by FL118 is through 
FL118 switching Mdm2-mediated ubiquitina-
tion and degradation of the tumor suppressor 
p53 (oncogenic effects) to Mdm2-mediated 
ubiquitination and degradation of MdmX (tumor 
suppression effects) [94]. Intriguingly, the deg-
radation of oncogenic protein MdmX by Mdm2 
is independent of the DNA damage signaling 
regulator ATM and the status of p53 and p21 
[94]. Furthermore, our recent studies indicated 
that in addition to its inhibition of survivin, Mcl-
1, XIAP, cIAP2 and MdmX, FL118 can effective-
ly inhibit the expression of ERCC6 (The Li Lab 
unpublished observations), a critical DNA repair 
regulator that is involved in active gene repair 
[95], correcting transcription-coupled DNA re- 
pair defects [96] and drug resistance [97]. This 
finding supports the idea that FL118 in combi-
nation with other DNA damaging drugs have 
the potential to even treat the most difficult-to-
treat cancers. Additionally, different from irino-
tecan, SN-38 and topotecan, which are sub-
strates of the efflux pump proteins ABCG2/
BCRP [98-103] and P-gp/MDR1 [104-109], 
FL118 is not a substrate of ABCG2 and P-gp, 
and can overcome treatment resistance result-
ing from the expression of ABCG2 [110] or P-gp 
[78]. This might be one of the reasons that 
FL118 can effectively overcome irinotecan and 
topotecan resistance [78] and can be orally 
administered with high antitumor activity [48]. 
Actually, development of non-efflux pump (e.g. 
ABCG2) substrate drug instead of inhibition of 
them is a new trend in the field for anticancer 
drug development [111]. 

Examples of certain CPT compounds that are 
not dependent on the inhibition of Top1 activity 
were suggested in previous studies. Pommier 
and his team previously showed that while 
most of the CPTs tested have a well association 
of Top1 activity inhibition with antitumor activi-
ty, two CPT analogues, 10-NH2-(RS)-CPT and 
11-CN-(RS)-CPT, showing very poor Top1 activi-
ty inhibition, extended mouse survival time 
much longer than other CPTs (which have 
strong Top1 activity inhibition) in the L1210 leu-
kemia metastatic survival mouse model [112]. 
The disagreement between antitumor efficacy 
and the potential inhibition of Top1 enzyme 
activity suggests that 10-NH2-(RS)-CPT and 
11-CN-(RS)-CPT may use alternative targets 
instead of Top1 for their anti-leukemia activity. 
Furthermore, it was recently reported that a 
CPT analogue O2-16 inactive against Top1 
activity showed broadly antiviral HIV-1 activity 
through a Top1-independent mechanism [113]. 
These observations indicate that CPT ana-
logues can show antitumor and antiviral activity 
independently of Top1 activity inhibition. Simi- 
larly, recent studies revealed that suppression 
of methyltransferase KMT1A by CPT in alveolar 
rhabdomyosarcoma tumor cells to induce cell 
differentiation is independent of CPT-mediated 
Top1 inhibition (Wolff, et al in press). Additional 
examples for novel antitumor mechanism of 
CPT analogues can be found in the sub-section 
of “Other CPT analogues or CPT conjugates” 
under the section of “Update of the outcomes 
of clinically developing CPT analogues” below.

It is now clear that CPTs can exert therapeutic 
effects independently of Top1 activity inhibi-
tion. However, those CPT analogues may still 
have Top1 inhibitory activity. This remaining 
Top1 activity inhibition may contribute to the 
drug side effects (e.g. hematopoietic toxicity), 
as suggested by our recent studies [48]. In this 
regard, avoiding or reducing a CPT analogue’s 
inhibition of Top1 activity would be one way to 
generate the next generation of low toxicity and 
high efficacious CPT structure-based antican-
cer therapeutic drugs. 

Update of the outcomes of clinically develop-
ing CPT analogues

There are many reviews in the CPT and CPT 
analogue research field that summarized vari-
ous aspects of the studies. In this regard, we 
found three of those review articles having 
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Table 1. Clinical trials of 9-aminocamptothecin (9-AC) and 9-nitrocamptothecin (9-NC, rubitecan)
Key Route & dose Formulation Cancer type and key clinical trial outcome Refs
1995 9-AC Phase I 72 h iv 3 wk/c*; MTD: 45 

µg/m2/h 
Dissolve in DMA, PEG400, 
phosphoric acid (see No 2)

31 pts w resistant solid tumors; DLT: NP, TCP; minimal 
responses were seen in pts w gastric, colon, and 
NSCLC; try alternative schedules. 

No 1 [123]

1996 9-AC Phase I 72 h iv at 0.1 mg/ml; 2 
wk/c*; 

2% DMA, 98% PEG400 w 
10 mM phosphoric acid 
diluted w saline

48 pts w progressive solid tumor, DLT: NP; PR: 1 
pt (finally progressed); 1 pt w 49% shrinkage in 
pulmonary nodules; 1 NSCLC pt w a 29% decrease 
in his lung metastases. MTD: 35 µg/m2/h or 47 µg/
m2/h w G-CSF

No 2 [124]

1996 9-NC Phase I po: CPT at 0.3 mg/m2/d x 
21 4 wk/c,; 9-NC at 1 mg/
m2/d, 5/wk* 

Drug powder is encapsu-
lated in gelatin capsules 
(see No 7 and No 34)

52 (CPT) and 29 (9-NC) pts w refractory solid & liquid 
cancer; DLT: CPT, diarrhea; 9-NC, NP, anemia and 
TCP; favorable responses (11% CPT, 24% 9-NC).

No 3 [125]

1997 9-AC Phase I 72 h iv 2 wk/c*; 5-74 µg/
m2/h

Same as No 5 (also see 
No 2)

48 pts w malignant solid tumor; total 9-AC circulating 
in plasma as the active lactone was less than 10%, 
no antitumor activity reported.

No 4 [126]

1997 9-AC Phase II 72 h iv at 35 µg/ m2/h in 
2 wk, 4 wk/c*

0.1 mg/ml in 2% DMA, 49% 
PEG400 w 5 mM phos-
phoric acid (see No 2)

17 naïve pts w metastatic colorectal carcinoma; No 
CR or PR; toxicity: neutropenia, nausea, vomiting, 
stomatitis, fatigue, and anemia but tolerated; lack of 
antitumor activity 

No 5 [127]

1997 9-AC Phase II 72 h iv at 59 then 50 µg/
m2/h w G-CSF in 2 wks* 

Same as No 5 (also see 
No 2)

16 pts w metastatic colorectal cancer; no OR; SD: 8 
pts; DLT: myelosuppression; conclusion: no promising 
for this regimen

No 6 [128]

1998 9-AC Phase I po, 1.5 on d1 & iv, 1 mg/
m2 on d8 or vice versa

Gelatin capsule containing 
9-AC-PEG1000 molten mix

12 pts w solid tumors; active lactone accounting for 
< 10% of total drug at the terminal disposition phase; 
the study is not activity focused

No 7 [129]

1998 9-AC Phase I 72 h iv at ≥ 37.5 µg/m2/h, 
3 wk/c*; 

Lyophilized CD in DMPC, 
DMPG & mannitol in 20% 
dextrose/saline 

25 pts w primary solid tumors; DLT: NP; OR: 0 pt; SD: 
9 pts for 2-6 months; Phase II: 54.2 µg/m2/h, 72 h iv 
infusion every 3 weeks.

No 8 [130]

1998 9-AC Phase I 72 h iv at 36 to 62 µg/
m2/h, 3 wk/c* 

DMA-PEG400-phosphoric 
acid (see No 2).  

23 pts w resistant solid tumors; DLT: NP, TCP; PR: 2 
pts; SD: 5 pts; Phase II: 52 µg/m2/h, 72 h iv infusion 
every 3 weeks (21 days). 

No 9 [131]

1998 9-AC Phase I po, d1-5 at 0.2-0.68 mg/
m2/d in 2 wk*; 

CD formulation (see No 8) 16 cancer pts; DLT: nausea; OR: 0 pt; conclusion: the 
CD formulation for iv is not good for po

No 10 [132]

1998 9-AC Phase II 120 h iv/wk x 3 wks* at 
480 µg/m2/d

Not clear, likely used the No 
2 recipe 

17 naïve pts w metastatic colorectal cancer; no re-
sponses observed; toxicity: granulocytopenia, nausea, 
vomiting and diarrhea

No 11 [133]

1998 9-AC Phase I 24 h iv/wk x4 at 0.7-1.9 
mg/m2, 5 wk/c* 

CD formulation (see No 8) 16 of 20 pts w 5-Fu resistant colorectal cancer; toxic-
ity: NP and diarrhea; Phase II: 1.65 mg/m2

No 12 [134]

1998 9-NC Phase I Po d1-5/wk at 1, 1.5, 2 
mg/m2/d in turn for 28, 
68 & 159 wks

Not clear (full paper is inac-
cessible)

43 pts w resistant metastatic cancer; DLT: anemia, 
NP, TCP, diarrhea; 5 pts w pancreatic, breast, ovarian 
& hematologic tumors had response; DS: 14 pts; 1 pt 
got 18-month TX 

No 13 [135]

1998 9-AC Phase II 72 h iv in 2 wk*; at 59-
45.8 µg/m2/h w G-CSF

DMA-PEG400-phosphoric 
acid (see No 2).  

58 pts w IIIB/IV NSCLC; PR: 5 pts; toxicity: NP, TCP; 
data not suggested further evaluation w the doses 
and schedule used.

No 14 [136]

1998 9-AC Phase II 72 h iv in 3 wk* at 40 
µg/m2/h 

DMA-PEG400-phosphoric 
acid (see No 2). 

45 pts w relapsed or refractory lymphomas; PR: 10 
pts; G-CSF reduced NP & diarrhea rates, but no help 
in dose increase; DLT: TCP.

No 15 [137]

1999 9-AC Phase I po d1-7 or d1-14 at 0.25 
to 1.1 mg/m2/d 3 wk/c*; 

Gelatin capsules: same as 
or similar to No 7

30 pts w solid tumors; DLT: NP, TCP; PR: 1 pt; (recom-
mended) phase II dose: 0.84 mg/m2/d

No 16 [138]

1999 9-AC Phase I po at 0.25 to 1.5 mg/
m2/d on d1, d6 or on 
d1, d8; 

Gelatin capsules: same as 
or similar to No 7

32 pts w solid tumors; PK focus; linear and dose-in-
dependent PK w small intrapatient kinetic variability; 
lactone form > 10%

No 17 [139]

1999 9-AC Phase I 0.5 h iv at ≥ 0.4 mg/
m(2)/d on d1-5/wk x 3 

CD (see No 8); further dilu-
tion w saline if needed 

31 pts w resistant solid tumors; DLT: TCP, NP; PR: 1 
pt; recommend phase II: 1.1 mg/m2/d; there is 10% 
lactone form

No 18 [140]

1999 9-AC Phase II 72 h iv at 35.4-59 µg/
m2/h in 2 wk x 2; 

DMA-PEG400-phosphoric 
acid (see No 2).  

80 pts w solid tumors; NP was the main toxicity; no 
tumor response; no lactone versus carboxylate infor-
mation but a total of both were measured.

No 19 [141]

1999 9-NC Phase II po d1-4/wk* at 1.5 mg/
m2/d 

Not clear (full paper is inac-
cessible)

29 pts w resistant ovarian, tubal or peritoneal cancer; 
7% remission and 34% obtained SD. Major toxicity: 
anemia, NP, TCP and diarrhea.

No 20 [142]

1999 9-AC Phase I 7 d iv at ≥ 0.2 mg/m2/d in 
3-4 wk x ≤ 2*; 

CD (see No 8); 100 µg/ml 
further dilution w sterile 
water

39 pts w resistant blood cancer; major toxicity: muco-
sitis and diarrhea; no complete or partial remission 
was observed.

No 21 [143]

1999 9-NC Phase II po at 1.5 mg/m2/d d1-5/
wk in 8 wk*; 

Capsule form (SuperGen 
provided (see No 7)

107 pts w advanced pancreatic cancer; 60 pts 
finished 2 8 wk courses; safe & efficacious; DLT: 
myelosuppression, interstitial cystitis

No 22 [144]
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2000 9-AC Phase II 72 h iv at 45 µg/m2/h; w 
G-CSF in 2 wk x ≥ 1*; 

Not described in the paper 18 pts w resistant breast cancer; major toxicity: 
granulocytopinia and TCP; 2 out of 15 assessable pts 
showed limited responses.

No 23 [145]

2000 9-AC Phase II 72 h iv at 35.4 µg/m2/h 
in 2 wk x ≥ 1*; 

Like used the recipe in 
No 2 

14 pts w H&N SCC; OR: 0 pt; hematologic toxicity was 
modest and promptly reversible.

No 24 [146]

2000 9-AC Phase II 72 h iv or 120 iv at 45.8 
or 20 µg/m2/h w or w/o 
G-CSF, 4 wk/c* 

DMA-PEG400-phosphoric 
acid (see No 2)

51 naïve pts w metastatic colorectal carcinoma; high 
toxicity (leukopinia, TCP, NP, diarrhea, hepatotoxicity); 
1/40 showed response; 3 pts died from treatment 
toxicity. 

No 25 [147]

2000 9-NC Phase I Aerosolization d1-5 at 6.7 
µg/kg/d in 3 wk x 2-14*

Aerosolized liposomal 6 pts w tumor metastasis to lung; no side effect 
higher than grade 2 was observed; plasma 9-NC: 37 
to 4.9 ng/ml in 24 h; SD: 2 pts

No 26 [148]

2000 9-NC Phase I po d1-5 at 1.5 mg/d in 
3 wk; Cis 30-60 mg/
m2/d x 1

No formulation information 
provided in the full paper

12 pts w unclear cancer type; DLT not reached; 10 
pts received ≥ 2 courses; OR: 0 pt; 

No 27 [149]

2001 9-AC Phase II 72 h iv/2 wk x ≥ 2* at 46 
µg/m2/h w G-CSF

Formulation is not clear 
(full paper is inaccessible)

12 pts w advanced lymphoma; the study was prema-
turely terminated due to toxicity; 3 pts died due to 
sepsis after their last 9-AC treatment

No 28 [150]

2001 9-NC Phase II po d1-5/wk at 1.5-2 mg/
m3/d up to 37 wk* 

Gelatin capsules (no 
details in full paper); refer 
to No 7

19 pts w advanced pancreatic cancer; OR: 4/14 pts; 
subjective responses: 13/14; toxicity terminated 
treatment in 7 pts

No 29 [151]

2001 9-AC Phase I 120 h iv/3-4 wk x ≥ 2* at 
0.41-0.77 mg/m2/d

Both DMA-PEG400-
phosphoric acid and CD, no 
details (see No 2 & No 8)

55 pts w solid tumors; OR: 1 pt; minor responses on 
pts w lung and colon cancer were also observed; DLT: 
NP, TCP, and diarrhea.

No 30 [152]

2002 9-NC Phase II po d1-5/wk* at 1.5 mg/
m2/d 

Formation is not clear (full 
paper is inaccessible)

28 pts w metastatic melanoma; SD: 4 pts for 3, 4, 
6 and 8 months; diarrhea, moderate hematopoietic 
toxicity, 

No 31 [153]

2002 9-AC Phase I ip q2d x 6/4 wk x ≥ 1c* 
at 1.25-13.5 mg/m2

Formation is not clear (full 
paper is inaccessible)

12 pts w peritoneal cancer; DLT: NP; 2 pts had objec-
tive evidence of clinical benefit and only one had 
progressive disease

No 32 [154]

2002 9-NC Phase II po d1-5/3 wk* at 1.5 
mg/m2/d 

Formulation was not de-
scribed in the paper.

15 eligible pts w advanced glioblastoma multiforme; 
NP and TCP were common; SD: 5 pts; not support for 
this disease use 

No 33 [155]

2002 9-NC Phase II po (fast vs. food) d1-5/
wk* at 1.5 - 2.0 mg/m2/d

Gelatin capsules w drug-
lactose mix inside (see 
No 7)

19 pts w naive advanced colorectal cancer; DLT: 
diarrhea, leucopinia, NP; toxicity well tolerated but no 
objective response;

No 34 [156]

2002 9-NC Phase I po d1-5/wk x 2 wk at ≥ 
0.75 mg/m2/d; Gem, iv

9-NC from SuperGen Inc, 
so likely capsule (see No 7)

21 pts w advanced malignancies; DLT: NT, TCP; SD: 
5/18 evaluable pts; MTD: 9NC 1 mg/m2, Gem 1000 
mg/m2 on d1and d8/3 wk 

No 35 [157]

2003 9-AC Phase I 72 h iv/2 wks* at 25-59 
µg/m2/h

CD formulation (see No 8) 20 pts w resistant solid tumors; DLT: granulocytope-
nia; no antitumor response; (recommended) Phase II 
dose: 47 µg/m2/h

No 36 [158]

2003 9-NC Phase I po: d1-5/2 wk; combina-
tion w capercitabine

Gelatin capsules w 9-NC 
and lactose inside.

21 pts w metastatic solid tumors; DLT: nausea, 
emesis; SD: 9 pts.

No 37 [159]

2003 9-NC Phase II po d1-5/wk* at 1.5 mg/
m2/d

Gelatin capsules w 9-NC w 
lactose inside.

56 pts w GI tumor or STS; well tolerated but inactive 
in GI; minimal activity in pts w STS.

No 38 [160]

2003 9-AC Phase I iv followed w po using 
complex schedules. 

CD formulation (see No 8 
for details)

32 pts w advanced solid tumors; DLT: anemia, NP, 
TCP; SD: 2 pts; lack of activity.

No 39 [161]

2004 9-NC Phase II po d1-5/wk x 3/c* at 1.5 
mg/m2/d

Formulation unclear (full 
paper is inaccessible). 

20 pts w advanced resistant urothelial tract tumors; 
acceptable toxicity; PR: 1 pt

No 40 [162]

2004 9-AC Phase II 72 h iv/2 wk* at 35 µg/
m2/h

DMA-PEG400-phosphoric 
acid (see No 2).

60 pts w ovarian carcinoma treated; 4 full and 6 
partial remissions (none was platinum-resistant); SD: 
19 pts; DLT: NP, TCP, anemia

No 41 [163]

2004 9-AC Phase II 120 h iv/2 wk at 25 µg/
m2/h 3 wk/c* 

Formulation unclear (full 
paper is inaccessible).

15 pts w naïve metastatic gastric cancer; SD: 3 pts 
lasting 3.4 months; DLT: NP, anemia

No 42 [164]

2004 9-NC Phase I/II po A: d1-5/wk in 2 wk; 
B: d1-14 in 4 wk; C: d1-5 
in 8 wk

crystalline powder in hard 
gelatin capsules (see No7 
and 34)

Pts w solid tumor: 34 on d1 PK, 11 on d10, d11 PK 
for A; 9 on d10, d11 PK for B; 4 for phase II on d1; 
focus PK; big interpatient and intrapatient variation 
of 9-NC vs. 9-AC

No 43 [165]

2004 9-NC Phase II po d1-5/wk* at 1.5 mg/
m2/d

Formulation unclear (full 
paper is inaccessible).

17 pts w resistant metastatic breast cancer; SD: 6 
pts; nausea, vomiting, fatigue, diarrhea were common 

No 44 [166]

2004 9-NC Phase II po d1-5/wk x 3* at 1.5 
mg/m2/d

Gelatin capsules (see No 7) 35 pts w SCLC; no objective responses were ob-
served; Toxicity was acceptable (TCP, nausea/vomit-
ing, diarrhea)

No 45 [167]

2004 9-NC Phase I Aerosolization; 6.7-26.6 
µg/kg/d x 5 for 1-6 wk

Liposome using dilauro-
ylphosphatidyl choline 
(DLPC)

25 pts w advanced lung cancer; the aerosol route is 
feasible and safe; 2 pts showed partial remissions; 
SD: 3 pts

No 46 [168]

2004 9-NC Phase I po d1-5/wk x 2 in 4 wk or 
d1-14/4 wk 

Unclear  in full paper (likely 
capsule, see No 7 or No34)

26 pts w advanced solid tumors; DLT: NP, TCP, diar-
rhea; SD: 3 pts; PR: 1 pt; Phase II: 2.43 and 1.70 mg/
m2/d

No 47 [169]
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2004 9-NC Phase III po d1-5/wk x 8 wk* at 1.5 
mg/m2/d;

SuperGen involved studies; 
so likely capsule (see No 7)

Resistant pancreatic cancer: 198 pts (9-NC) vs. 211 
pts (best care); no median survival difference but MS 
and PFS favored to 9-NC pts; Conclusions: The study 
can achieve tumor growth control with an acceptable 
risk-benefit ratio for the disease with few treatment 
options.

No 48 [170]

2005 9-NC Phase III po d1-5/wk* at 1.5 mg/
m2; 5-Fu iv weekly at 600 
mg /m2

Capsules 224 pts w resistant pancreatic cancer; In the evalu-
able group, 14 of 35 pts achieved tumor growth 
control (OR: 4 pts; SD: 10 Pts); no survival improve-
ment evidenced;

No 49 [171]
No 50 [121]

2005 9-NC Phase II po d1-5/wk* at 1.25 mg/
m2/d

9-NC from SuperGen Inc, so 
likely capsule (see No 7) 

51 pts w advanced chordoma, STS or GIST; OR: 2 pts; 
major toxicity: anemia, leukopenia, fatigue, nausea, 
diarrhea

No 51 [172]

2005 9-AC Phase II 120 h iv/wk in 3 wk* at 
25 µg/m2/h

CD formulation (see No 8) 56 pts w platinum-resistant ovarian cancer; major 
toxicity: NP, leukopenia, anemia, TCP; CR: 4 pts; PR: 4 
pts; SD: 18 pts

No 52 [173]

2005 9-NC Phase I po d1-5/wk• at 1-1.25 
mg/m2/d; 45 Gy/5 wks of 
radiation

9-NC from SuperGen Inc, so 
likely capsule (see No 7)

8 pts w locally advanced pancreatic cancer; DLT: 
nausea/vomiting, fatigue, anorexia, leukopenia, 
dehydration; Conclusion: 1 mg/m2/day can be given 
w radiation

No 53 [174]

2005 9-NC Phase II po d1-5/wk* at 1.5, 1.75 
and/or 2.0 mg/m2/d

Unclear, likely capsule (see 
No 7)

17 pts w IIIB(9), IV(8) naive NSCLC; well tolerated (no 
NP, TCP); SD: 10 pts; conclusion: inactive at doses 
used for this type of NSCLC.  

No 54 [175]

2005 9-NC Phase II po d1-5/wk x 8 wk at 1.5 
mg/m2/d

Unclear, likely capsule (see 
No 7)

58 pts w resistant pancreatic cancer; PR: 3/43 pts; 
SD: 7/43 pts; common toxicity: gastrointestinal and 
hematologic toxicity

No 55 [176]

2006 9-AC Phase I 72 h iv/2 wk* at 46 µg/
m2/h

Formulation unclear (full 
paper is inaccessible).

14 pts w glioblastoma multiforme (GBM); DLT: lym-
phopenia, NP; lack activity against GBM, no further 
trial necessary for 9-AC in GBM

No 56 [177]

2006 9-AC Phase I 7 d (DMA) iv or 21 d (CD) 
iv at ≥ 6.2 µg/m2/h 

Both DMA & CD formula-
tions used (see No 2 and 
No 8)

57 pts w resistant solid tumor; DLT: NP, TCP; 
OR: 6/57 pts; 9AC/CD has ~2x lactone form of those 
from 9AC/DMA for the same dose level.

No 57 [178]

2006 9-NC Phase I po d1-3 (9NC at  0.75-2 
mg/m2), then etoposide

Formulation not provided in 
the paper

45 pts with advanced cancer; DLT: NP, TCP, nausea, 
vomiting, diarrhea and fatigue in 6 pts; OR: 2 pts; SD: 
13 pts;

No 58 [179]

2006 9-NC Phase I po w or w/o fast at 1.5 
mg/m2; then d1-5/wk 

0.5 mg tablets from Super-
Gen, Inc. (Dublin, CA, USA)

16 pts w solid tumors; SD: 2 pts for 8 wks; food 
recued 9-NC absorption but no 9-AC exposure differ-
ence; high inter-patient variability

No 59 [180]

2006 9-NC Phase II po d1-5/wk* at 1.5 mg/ 
m2/d;

Drug from SuperGen Inc, 
likely capsule (see No 7)

16 pts w resistant metastatic breast cancer; SD: 
5/13 pts; grade 3/4 toxicity: allergy, pain, diarrhea, 
TCP(2), myalgia

No 60 [181]

2006 9-NC Phase II po d1-5/wk* at 1.5 mg/
m2/d

Formulation unclear (full 
paper is inaccessible).

14 pts w advanced 5Fu-resistant colorectal cancer; 
well tolerated; DLT: anemia, diarrhea; no response/no 
seen clinical activity.

No 61 [182]

2008 9-NC Phase I iv Cis on d1, then po 9NC 
d1-5/wk x 3 wk

Formulation unclear (full 
paper is inaccessible)

51 pts w resistant solid tumors; DLT: TCP, NP; 1 pt w 
partial remission; SD: 12 pts; Phase II: Cip/9NC, 60 
mg/m2/1.25 mg/d or 40 vs. 2.0 

No 62 [183]

2008 9-NC Phase II po d1-5/wk* at 1.5 mg/
m2/d;

Crystal powder in gelatin 
capsule, likely from Super-
gene Inc.

19 pts w resistant metastatic head-&-neck cancer; 
SD: 3/13 pts & 10 progressed; 3 died shortly after 
treatment; DLT: anemia NP, TCP

No 63 [184]

2009 9-AC Phase II 72 h iv/2 wk*; 0.85 mg/
m2/d (DMA); 1.1 mg/
m2/d (CD)

Both DMA and CD formula-
tions used (see No 2 and 
No 8)

37 pts w relapsed lymphoma; OR rate: ~17% similar 
in both formulations; DLT: NP, anemia, TCP; serum 
drug level not link to response & toxicity

No 64 [185]

2011 9-NC Phase I po once at 1.25-1.75 mg/
m2; then d1-5/wk at 1.5 
mg/m2

Capsules from Qilu Pharma-
ceutical Co., Ltd, China

23 pts w advanced solid tumors; PK focused, no se-
rous toxicity; There was 2-13 fold variabilities in 9-NC 
and 9-AC exposure among different pts

No 65 [186]

comprehensive coverage largely without being 
redundant. One is from Legarza K and Yang LX 
in 2005 [114]; this article reviewed preclinical 
and clinical studies of individual CPT ana-
logues, and the article format is very good for 
overviewing individual CPT analogue clinical 
development status then. The second article is 
from Venditto VJ and Simanek EE in 2010 [115]. 
This article used a similar review format but put 

more emphasis on the pharmacokinetics (PK) 
data-driven evaluation of various CPT ana-
logues and clinical potential when the data was 
available. These two publications focused on 
distinct emphases on the available CPT ana-
logues, and largely cited different publications. 
The third one is from Liu YQ et al in 2015. [116]. 
This article comprehensively reviewed the bio-
logical property of various CPT derivatives for 
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potential treatment of cancer and other human 
disease. In this section of our review, the major 
goal is to review up-to-date CPT-based ana-
logues that have been moved into clinical trials 
for cancer treatment and recent research pro-
gression in the CPT analogue research area. 

Rubitecan (Orathecin, RFS2000/RFS-2000) 
(Figure 1G)

During irinotecan (CPT-11) development in the 
late 1980s, many CPT analogues were gener-
ated by adding a chemical group on the A-ring 
of CPT. Two of these compounds are 9-nitro-
camptothecin (9-NC, rubitecan) and 9-amino-
camptothecin (9-AC) [36]. Rubitecan/9-NC can 
be converted to 9-AC in vivo [117]. Studies indi-
cated that 9-AC but not 9-NC is a substrate of 
ABCG2/BCRP [118]. So the advantage of 9-NC 
is that it was found to have a better overall PK 
profile via oral routes versus intravenous routes 
shown in rats [119], and thus oral administra-
tion of 9-NC may clinically be more effective, 
although its poor absorption in the given formu-
lation is still an issue [119]. Generally speaking, 
at least some of the preclinical studies on 9-NC 
or 9-AC in animal models obtained promising 
results when used alone [114, 115] or in com-
bination with radiation [120]. However, most (if 
not all) clinical Phases I and II trials with 9-AC 
obtained disappointing results indicating the 
lack of antitumor activity for various human 
cancers with severe toxicity (Table 1). Inter- 
estingly, although there was a lack of promising 
clinical trial data in place in the mid-to-late 
1990s, multiple clinical trials with 9-AC were 
continued until 2009, and later studies were 
also unable to obtain strong positive results for 
arguing further development (Table 1). The gen-
eral conclusion is that further development of 
9-AC for clinical application is not warranted in 
any cancer type that was clinically tested. 
Meanwhile, clinical trials with 9-NC were also 
continuously conducted throughout the mid 
1990’s until 2011. Most of these clinical trials 
with 9-NC did not result in promising data to 
warrant further commercialization of 9-NC with 
the exception of pancreatic cancer with or with-
out radiation/drug combination (Table 1), which 
seemingly provided a hope for commercializa-
tion of 9-NC for treatment of advanced pancre-
atic cancer. Two Phase III clinical studies on 
advanced pancreatic cancer patients reported 
in ASCO Annual Meeting in 2004 and 2005 
(Table 1), though no full papers were followed 

for detailed evaluation. Nevertheless, based on 
the information on rubitecan/9-NC at the Astex 
Pharmaceuticals website (of note, the rubite-
can’s sponsor SuperGen merged with Astex in 
2011), the FDA officially accepted the rubitecan 
capsules’ New Drug Application (NDA) filed by 
SuperGen as a treatment for pancreatic cancer 
patients who have failed at least one prior che-
motherapy in 2004 [121]. The news release 
indicated that the NDA filing contained data on 
more than 1,000 pancreatic cancer patients 
who failed at least one prior chemotherapy 
[121]. Of this population, more than 600 pa- 
tients received Orathecin/rubitecan/9-NC cap-
sules and the other ~400 patients were given 
control therapies [121]. However, based on an 
unclear source (likely SuperGen website then) 
provided in the Clark’s 2006 rubitecan review 
article, the NDA was withdrawn in 2005 by 
SuperGen, when the FDA informed SuperGen 
that the data at that point did not support 
approval of the drug for patients with advanced 
pancreatic cancer who had progressed on prior 
therapy [122]. Now after another decade has 
passed, rubitecan/9-NC may likely become an 
example that has provided us with many les-
sons for making a go or no/go decision much 
earlier in order to avoid the need of over 60 
clinical trials on 9-NC and 9-AC (Table 1).

Belotecan (CKD-602/CKD602/CKD 602, Cam-
tobell) (Figure 1H)

Belotecan is a water-soluble CPT analogue and 
was found to be a substrate of Pgp/MDR1 and 
BCRP/ABCG2 [187]. This finding is consistent 
with the fact that belotecan has never been 
reported to be orally administered thus far.  
Recent studies using oral squamous cell carci-
noma cell lines indicated that the antiprolifera-
tive effects of belotecan is associated with an 
increase of phospho-cdc2 (Tyr 15), cyclin A2 
and cyclin B1 as well as apoptosis in parallel 
with G2/M arrest [188]. However, it is unclear 
whether the increased expression of cyclin A2 
and cyclin B1 is actually a resistant factor for 
belotecan, and involved in making belotecan 
less effective, which could be worthy of further 
investigation for clarification. Nevertheless, pre- 
clinical studies revealed that belotecan had 
good antitumor activity as a Top1 inhibitor, 
although in most cases belotecan was only 
able to delay or transiently regress tumor 
growth [114, 115]. Clinical development of be- 
lotecan began sometime before 2000 (Table 
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Table 2. Clinical trials of belotecan (CKD-602/CKD602, Camtobell)
Key Route & dose Formulation Cancer type and key clinical trial outcome Refs
2000 Phase I 0.5 h iv d1-5 at 0.5-0.9 

mg/m2/d; 3 wk/c
Not clear in the publi-
cation.

pts w advanced solid cancers; DLT: NP; MTD: 0.7 mg/m2/d; 
PR in some pts w stomach or ovarian cancer was observed

No 1 [191]

2007 Phase I 0.5 h iv on d1, d4 at ≥ 0.4 
mg/m2/d; Cis 60 mg/m2 
on d1; 3 wk/cycle

Not clear in the publi-
cation.

17 pts w SCLC, MTD: 0.5 mg/m2/d; DLT: NP w favor; 13/17 
w PR; plasma clearance of belotecan was 5.78 ± 1.32 L/h 
and terminal half-life was 8.55 ± 2.12 h. warranted for 
Phase II.

No 2 [192]

2008 Phase II 0.5 h iv on d1-5 at 0.5 mg/
m2/d; 3 wk/cycle

5% dextrose water 
infusion

27 pts w SCLC; 9 PR; 1 CR; most common toxicity: NP; 
active for SCLC and warranting combination w platinum or 
other agents.

No 3 [193]

2008 Phase II 0.5 h iv on d1-5 at 0.5 
mg/m2/d; 3 wk/cycle: 
94/24 pts

Not clear in the publi-
cation.

24 pts w recurrent ovarian cancer; 4 pts had PR & 5 pts had 
SD; DLT: NP; against both Cis-sensitive (8) and resistant (1) 
tumors. 

No 4 [194]

2009 Phase I/IIa 0.5 h iv on d1-5 at ≥ 0.3 
mg/m2/d; Cis 60 mg/m2 
on d5; 3 wk/cycle: 2-12/pt

5% dextrose water 
infusion

26 pts w recurrent ovarian cancer; MTD: 0.3 mg/m2/d; DLT: 
NP; grade 3 nausea and anorexia were the most common 
GI toxicities; against both Cis-sensitive (14) and resistant 
(4) tumors.

No 5 [195]

2009 Phase I 1 h iv at 0.1-2.5 mg/m2/d; 
3 wk/cycle: 1-8/pt

Pegylated liposomal w 
5% dextrose infusion

45 pts w refractory solid tumors; DLT: mucositis, bone 
merrow suppression, NP; MTD: 2.1 mg/m2/d; 2 pts w PR; 
extending exposure

No 6 [196]

2010 Phase II 0.5 h iv on d1-5 at 0.5 mg/
m2/d; 3 wk/cycle: ≤ 6/pt

Not clear in the publi-
cation.

27 pts w relapsing SCLC after irinotecan failure; DLT: NP, 
TCP; Conclusion: modest activity w manageable toxicities 
in Asia pts.

No 7 [197]

2010 Phase II Iv d1-5; at 0.5 (bel), 1.5 
(top) mg/m2, 3 wk/cycle

Not clear in the publi-
cation.

45 pts (topotecan) & 35 pts (belotecan) w recurrent ovarian 
cancer; ORR: topotecan 24% vs. belotecan 45%; no survival 
differences; 

No 8 [198]

2010 Phase II 0.5 h iv on d1-5 at 0.5 mg/
m2/d; 3 wk/cycle: ≥ 3/pt

5% dextrose water 
infusion

62 pts w extensive stage naive SCLC; DLT: NP, TCP; Conclu-
sion: relatively active (ORR: 53%) and well tolerable.

No 9 [199]

2010 Phase II 0.5 h iv on d1-5 at 0.5 mg/
m2/d; 3 wk/cycle: ≥ 3/pt

5% dextrose water 
infusion

63 pts w refractory ovarian cancer; DLT: NP, TCP; active 
(ORR: 30%, 9 CR); major toxicity: hematopoietic toxicity

No 10 [200]

2010 Phase II 0.5 h iv on d1-4 at 0.5 mg/
m2/d; Cis 60 mg/m2 on d1; 
3 wk/cycle: ≤ 6/pt*

Not clear in the publi-
cation.

30 pts w extensive stage naive SCLC; 21 pts (ORR: 70%); 
PR; DLT: NP, TCP; Conclusion: combination has promising 
response with a manageable toxicity profile.

No 11 [201]

2010 Phase II iv on d1-5 at 0.5 or 0.3 
mg/m2/d (Cis 50 mg/
m2 on d1); 3 wk/cycle: ≤ 
6/pt*

Not clear in the publi-
cation.

53 pts w recurrent ovarian cancer; combination better then 
belotecan alone (16/34: 47.1% vs. 4/19: 21.1%) but belote-
can alone has less grade 3 or 4 toxicity than combination.

No 12 [202]

2011 Phase II 0.5 h iv on d1-5 at 0.3 mg/
m2/d; Carbop-latin on d5; 
3wk/cycle: > 2/pt*

Not clear in the publi-
cation.

38 pts w recurrent ovarian cancer; CR: 7 pts; PR: 13 pts; 
SD: 6 pts; progress disease: 9 pts; DLT: NP, TCP, anemia; 
combination is well-tolerated with activity for the disease. 

No 13 [203]

2011 Phase II 0.5 h iv on d1-5 at 0.5 mg/
m2/d; 3 wk/cycle: 1-7/pt

5% dextrose water 
infusion

16 pts w recurrent cervix carcinoma; DLT: NP, anemia; 
no PR; no CR; Conclusion: belotecan is not active to this 
disease.

No 14 [204]

2011 Phase II 0.5 h iv on d1-4 at 0.5 mg/
m2/d; 3 wk/cycle: ≥ 3/pt

5% dextrose water 
infusion

25 pts w non-naive SCLC; ORR: 24%; DLT (grade 3/4): NP 
(88%), TCP (40%); Conclusion: relatively active and well 
tolerated.

No 15 [205]

2012 Phase II 0.5 h iv on d1-4 at 0.5 mg/
m2/d; Cis 60 mg/m2 on d1; 
3 wk/cycle: ≤ 6/pt*

5% dextrose water 
infusion

35 pts w extensive stage naive SCLC; ORR: 71%; DLT (grade 
3/4): NP (68%), TCP (28%), anemia (20%); Conclusion: 
significant efficacy w non-hematologic toxicity improved.

No 16 [206]

2012 Phase I 0.5 h iv on d1-4 at 0.5 
mg/m2/d; etoposid 50 
mg/d po d6-10; 3 wk/
cycle: ~3/pt*

Sterile water 9 pts w non-naïve solid tumors; PR: 2 pts; CR: 2 pts; having  
DLT; conclusion: promising activity for platinum-resistant or 
heavily pretreated ovarian cancer pts

No 17 [207]

2012 Phase II 0.5 h iv on d1-4 at 0.5 
mg/m2/d; Cis 60 mg/m2 
on d1; 3 wk/cycle: ≥ 2/pt*

Not clear in the pub-
lication.

50 pts w relapse/refractory SCLC; ORR: low; DLT (grade 
3/4): NP (54%), TCP (38%), anemia (32%); Conclusion: 
modest activity w an acceptable safety profile.

No 18 [208]

2012 Phase I 1 h iv at 0.1-2.5 mg/m2/d 
(PK focus)

Pegylated liposomal w 
5% dextrose infusion

45 pts w solid tumors; pts w liver tumor is 1.5-fold higher to 
eliminate the drug than pts without liver tumors. 

No 19 [209]

2013 Phase II 0.5 h iv d1-4 at 0.5 mg/
m2/d; Cis at 60 mg/m2 on 
d1; 3 wk/cycle: ≤ 6/pt*

5% dextrose water 
infusion

42 pts w extensive stage naive SCLC; ORR: 62%; DLT (grade 
≥ 3): NP (90%), TCP (63%), anemia (34%); Conclusion: 
combination is effective but toxicity is too high. 

No 20 [210]

2013 Phase II 0.5 h iv on d1-5 at 0.5 
mg/m2/d; 3 wk/cycle: 
≥ 2/pt

5% dextrose water 
infusion

26 pts w extensive stage naive SCLC; ORR: 35%; DLT (grade 
3/4): NP (81%), TCP (15%); Conclusion: modest efficacy w 
OK toxicity.

No 21 [211]

2016 Phase III Route: iv; Combination: 
belotecan/Cis (BP); etopo-
side/Cis (EP)

5% dextrose water 
infusion

71 pts (BP) & 76 pts (EP) w extensive stage naive SCLC; 
randomized, open-label, parallel-group studies. Conclusion: 
No significant difference of BP vs. EP but BP is more toxic. 

No 22 [189]
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2). A large number of belotecan Phase I and 
Phase II clinical trials were published between 
2007 and 2013 (Table 2). The results from 
these clinical trials obtained mixed results in 
various cancer types with belotecan monother-
apy or in combination with cisplatin (Table 2). 
Nonetheless, a belotecan Phase III clinical trial 
was performed using the most promising can-
cer type of 147 extensive-stage naïve SCLC 
patients (no past history of chemotherapy or 
radiotherapy) via randomized open-label for a 
head-to-head comparison of antitumor efficacy 
and toxicity between belotecan/cisplatin (BP, 
71 patients) and etoposide/cisplatin (EP, 76 
patients) in multiple centers [189]. In the BP 
arm, one patient had a complete response, 41 
had a partial response (PR), and 17 had stable 
disease (SD). In the EP arm, 35 patients had PR 
and 28 had SD. The response rate (RR) in the 
BP arm was non-inferior to the EP regimen in 
patients with ES-SCLC (BP: 59.2%, EP: 46.1%, 
difference: 13.1%, 90% two-sided confidence 
interval: -0.3-26.5, meeting the predefined 
non-inferiority criterion of -15.0%). No signifi-
cant differences in overall survival (OS) or pro-
gression-free survival (PFS) were observed 
between the treatment arms. Hematologic tox-
icities, including grade 3/4 anemia and thro- 
mbocytopenia (TCP), were significantly more 
prevalent in the BP arm than the EP arm. The 
authors concluded that The RR to the BP regi-
men was non-inferior to the EP regimen in this 
type of cancer. However, hematologic toxicities 
were significantly more prevalent in the BP 
group [189]. In our view, this is a negative 
result. However, a recent retrospective review 
of 94 patients with SCLC (with or without prior 
chemotherapy) who were treated using belote-
can monotherapy (n = 59, 188 cycles) or topo-
tecan monotherapy (n = 35, 65 cycles) between 
September 2003 and December 2011 indicat-
ed that TCP occurred during 42% and 61.5%  
of the belotecan and topotecan cycles, resp- 
ectively (P = 0.007). Grade 4/5 lung infection 
(belotecan 3.2% versus topotecan 10.8%, P = 
0.003), all-grade headache (belotecan 3.2% 
versus topotecan 10.8%, P = 0.017), and grade 
4/5 increased liver enzymes (belotecan 0.5% 
versus topotecan 4.6%, P = 0.023). The median 
time to progressive disease (TTPD), chemother-
apy-specific survival (CSS), and OS were 14 
months and 11.6 months (P = 0.646), 10 mon- 
ths and 7 months (P = 0.179), and 34.5 mon- 
ths and 21.4 months (P = 0.914) after belote-
can and topotecan monotherapy, respectively. 

These authors concluded that belotecan may 
be safer than topotecan for monotherapy in 
SCLC patients, and in terms of efficacy, belote-
can could be comparable to topotecan in mo- 
notherapy [190]. Nevertheless, based on our 
review of the relevant information above and in 
Table 2 for belotecan, additional trials using 
belotecan will most likely prove to be unpro- 
ductive. 

Exatecan (DX-8951f/DX8951f or DX-8951/
DX8951) (Figure 1I)

Unlike belotech being a substrate of both Pgp/
MDR1 and BCRP/ABCG2 [187], exatecan is not 
a substrate of P-gp [114]. However, exatecan 
induces BCRP/ABCG2 protein, which is associ-
ated with reduction of its antitumor activity 
[212]. Nevertheless, exatecan exhibited acti- 
vity in multiple cancer cell lines and/or xeno-
grafts including human breast, gastric, renal, 
colon, ovarian, cervical and lung [114, 213] as 
well as in acute myelogenous leukemia (AML) 
[214] and pancreatic cancer [115]. Interestingly, 
preclinical toxicological studies revealed that 
dogs are more sensitive to exatecan than mice 
[215]. Nevertheless, based on the supportive 
preclinical studies, exatecan subsequently we- 
nt into clinical trials (Table 3). Based on the 
overall information obtained in the Phase I and 
Phase II clinical trials over time in various types 
of cancer, high toxicity was always an issue, but 
it was manageable. As seen from the Phase III 
clinical trials below, the matter that sends 
exatecan into the grave is the lack of sufficient 
antitumor activity. A multicenter randomized 
open-label phase III clinical trial in 349 patients 
with advanced pancreatic cancer yielded very 
disappointing results: Exatecan plus gemcita- 
bine obtains no better patient outcomes than 
gemcitabine alone, while exatecan plus gem-
citabine clearly exhibits more toxic than gem-
citabine alone. Patients have locally advanced 
or metastatic pancreatic adenocarcinoma with-
out prior chemotherapy but may have radiation 
treatment alone for locally advanced disease; 
175 patients were treated with exatecan 2.0 
mg/m2 (30 min intravenous infusion) and gem-
citabine 1,000 mg/m2 (immediately following 
exatecan administration) on days 1 and 8, 
every 3 weeks. Gemcitabine alone for the 174 
control patients were dosed at 1,000 mg/m2 
up to 7 weeks in the first cycle, then once a 
week for the first 3 weeks of a 4-week cycle. 
Tumor assessment was performed every 6 
weeks. The primary end point was overall sur-
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Table 3. Clinical trials of exatecan (DX-8951f/DX-8951 or DX8951f/ DX8951)
Key Route & dose Formulation Cancer type and key clinical trial outcome Refs
2000 Phase I 0.5 h iv at 4-7.1 mg/m2; 3 

wk/c: 3/pt
Lyophilized drug 
in saline

12 pts w refractory solid tumors; DLT: NP; MTD: 
7.1 mg/m2; Phase II dose: 5.33 mg/m2

No 1 [217]

2000 Phase I iv w multiple Phase I 
schedules and doses

Not clear in the 
publication.

pts w various solid tumors; DLT: NP; Goal: find 
DLT, MTD, Phase II schedule and dose.

No 2 [218]

2000 Phase I 0.5 h iv d1-5 at 0.1-0.6 
mg/m2/d; 3 wk/c: 3-4/pt

Lyophilized drug w 
maltose in saline

36 pts w advanced solid tumors; Phase II dose: 
≥ 0.3 mg/m2; DLT: NP, myelosuppression; exhib-
iting modest antitumor activity.

No 3 [219]

2000 Phase II 0.5 h iv d1-5 at 0.3 (HP), 
0.5 (MP) mg/m2/d

Not clear in the 
publication.

14 pts w advanced ovarian, tubal or peritoneal 
resistant cancers; DLT: NP; SD: 4 pts. HP: heav-
ily pretreated; MP: minimally pretreated

No 4 [220]

2001 Phase I 0.5 h iv at 3, 5, 6.65 mg/
m2; 3 wk/c: ≥ 1/pt

Drug dissolved in 
saline

15 pts w advanced solid tumors; DLT: NP; Phase 
II dose: 5 mg/m2; focus on pharmacokinetics 

No 5 [215]

2001 Phase I 24 h iv at ≥ 0.15 mg/m2; 
3 wk/c: ≥ 2/pt

Drug dissolved in 
saline

22 pts w advanced solid tumors; SD: 4 pts; DLT: 
gradulocytopenia; MTD/Phase 2 dose: 2.4 mg/
m2

No 6 [221]

2001 Phase I 24 h iv at 0.05-1.2 mg/
m2; 3/4 wk/c: 3/pt

Drug dissolved in 
saline

27 pts w resistant solid tumors; SD: 4 pts; DLT: 
NP. TCP; Phase 2: 0.8 (MP), 0.53 (HP) mg/m2

No 7 [222]

2002 Phase I 0.5 h iv d1-5 at 0.6 -1.35 
mg/m2; 3/4 wk/c: ≥ 1/pt

Drug dissolved in 
saline

25 pts w advanced leukemia; SD: 4 pts; DLT: 
0.9-1.35 mg/m2; PR: 1 pt but no CR; Phase 2 
dose: 0.9 mg/m2

No 8 [223]

2003 Phase I 0.5 h iv d1 w multi-doses; 
4 wk/c: 1-10/pt

Lyophilized drug 
in saline

35 pts w advanced solid tumors; PR: 2 pts; SD: 
12 pts; DLT: NP (MP), NP & TCP (HP); Phase 2 
dose: 2.75 (MP), 2.1 (HP) mg/m2

No 9 [224]

2003 Phase II 0.5 h iv d1-5 at 0.5 mg/
m2/d; 3 wk/c: ≤ 6/pt

Not clear in the 
publication.

39 pts w advanced NSCLC; PR: 2 pts; SD: 20 
pts; DLT: NP; Conclusion: limited activity. 

No 10 [225]

2003 Phase II 0.5 h iv d1-5 at 0.5 mg/
m2/d; 3 wk/c: 1-16/pt

Drug dissolved in 
saline

39 pts w resistant/metastatic breast carcinoma; 
PR: 3 pts; SD: 8 pts; DLT: NP; moderate activity.

No 11 [226]

2003 Phase I 21 d iv at 0.15 mg/m2/d Lyophilized drug w 
maltose in saline

31 pts w advanced solid tumors; PR: 2 pts; DLT: 
N, TCP (unacceptable high)

No 12 [227]

2004 Phase IIa 0.5 h iv, d1-5 at 0.3 mg/
m2/d, 3 wk/c or at 2.1 
mg/wk; 3/4 wk/c

Lyophilized drug w 
maltose in saline

39 pts w resistant ovarian cancer; poor/modest 
activity; DLT: NP, myelosupression and emesis.

No 13 [228]

2004 Phase II 0.5 h iv d1-5 at 0.5 mg/
m2/d; 3 wk/c* 

Drug dissolved in 
saline

15 pts w resistant/metastatic colorectal cancer; 
SD: 6 pts; DLT: NP; Conclusion: poor activity. 

No 14 [229]

2004 Phase II 0.5 h iv d1-5 at 0.5 mg/
m2/d; 3 wk/c: ≥ 2/pt

Lyophilized drug 
in saline

16 pts w advanced/resistant ovarian, tubal or 
peritoneal resistant cancers; SD: 7 pts. DLT: NP, 
neutropenia; conclusion: poor activity 

No 15 [230]

2005 Phase II 0.5 h iv d1-5 at 0.5 mg/
m2/d; 3 wk/c: ≥ 2/pt

Not clear in the 
publication.

41 pts w advanced biliary tract cancers; PR: 2 
pts; SD: 12 pts. DLT: NP, neutropenia; conclu-
sion: minimal activity w manageable toxicity 

No 16 [231]

2005 Phase II 0.5 h iv d1-5 at 0.5 mg/
m2/d; 3 wk/c*: 1-10/pt 
(median 3)

Not clear in the 
publication.

39 pts w metastatic naïve gastric cancer; PR: 2 
pts; SD: 18 pts; DLT: NP, neutropenia; conclu-
sion: modest activity; toxicity manageable 

No 17 [232]

2006 Phase III 0.5 h iv (see text for 
detail)

Not clear in the 
publication.

175 pts (exatecan plus Gem) vs. 174 pts (Ge 
only) w advanced naïve pancreatic cancer; Two 
drugs no better than Gem alone but more toxic

No 18 [216]

2007 Phase II 0.5 h iv d1-5 at 0.5 mg/
m2/d; 3 wk/c*: median 2

Not clear in the 
publication.

39 pts w advanced soft tissue sarcoma; DLT 
(grade 3/4): NP (49%), TCP (23%), anemia 
(15%); modest/non-significant activity

No 19 [233]

vival. The median survival time was 6.7 months 
for exatecan plus gemcitabine and 6.2 months 
for gemcitabine alone (P = 0.52). One complete 
response (CR, < 1%) and 11 partial responses 
(PR, 6.3%) were observed in the exatecan plus 
gemcitabine treatment group, and one CR (< 

1%) and eight PR (4.6%) were observed in the 
gemcitabine-alone group. Grade 3 and 4 toxici-
ties were higher for the two arm versus the 
gemcitabine alone arm; neutropenia (30% vs. 
15%) and thrombocytopenia (15% vs. 4%). From 
such outcomes, the authors concluded that 
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exatecan plus gemcitabine was not superior to 
gemcitabine alone with respect to overall sur-
vival in the first-line treatment of advanced pan-
creatic cancer [216].

DE-310/DE310

DE-310 is the exatecan/DX-8951f covalently 
conjugated with a carboxymethyldextran poly-

alcohol carrier via a peptidyl spacer. Use of a 
murine Meth A (fibrosarcoma) model demon-
strated that DX-8951f at its MTD via a qd × 5 
schedule shrank the tumor. In contrast, single 
treatment (qd × 1) with DE-310 at the MTD or 
1/4 MTD shrank the tumor, with no body weight 
loss at 1/4 MTD [234]. Against 5 human tumor 
(colon and lung cancer) xenografts in nude 
mice, DE-310 (qd × 1) was as effective as 

Table 4. DE-310/DE310
Key Route & dose Formulation Cancer type and key clinical trial outcome Refs
2005 Phase I 3 h iv at 1-2 mg/m2, 2 

wk/c or at 6-9 mg/m2, 
6 wk/c (86c/24 pts)  

Lyophilized 
drug w maltose 
diluted in saline

27 pts w advanced solid tumors; DLT: NP, TCP, 
veno-occlusive hepatotoxicity; CR: 1 pt; PR: 1 
pt; SD: 14 pts; Phase II: 7.5 mg/m2, 6 wk/c

No 1 [237]

2005 Phase I 3 h iv at 6 mg/m2; one 
time for PK studies

Lyophilized 
drug w maltose 
diluted in saline

6 pts w solid tumors; preferential accumula-
tion of DE-310, DX-8951 and G-DX-8951 in 
human tumor tissues was not observed

No 2 [238]

Table 5. Clinical trials of lurtotecan (GI147211/GI-147211, NX211/NX-211, OSI211/OSI-211)
Key Route & dose Formulation Cancer type and key clinical trial outcome Refs
1996 Phase I 0.5 h iv d1-5 at 0.3-1.5 

mg/m2/d; 3 wk/c: ≥ 3/pt
Drug diluted w  
D5W

18 pts w refractory solid tumors; DLT: NP, TCP; 
PR: 1 pt; Phase II: 1.2 mg/m2 on d1-5, 3 wk/c

No 1 [244]

1998 Phase I 0.5 h iv d1-5 at 0.3-1.75 
mg/m2/d; 3 wk/c: ~3/pt

Drug diluted in 
5% dextrose in 
water (D5W) 

24 pts w advanced solid tumors; DLT: NP, TCP; 
Phase II: 1.0 mg/m2 on d1-5, 3 wk/c; manage-
able toxicity but need to see distinct efficacy

No 2 [245]

1998 Phase I 72 h iv at 0.25-2.5 mg/
m2/d

Drug diluted in 
D5W 

44 pts w advanced solid tumors; DLT: NP, TCP; 
PR: 3 pts; Phase II: 1.75 (MP), 1.2 (HP) mg/
m2/d 

No 3 [246]

2000 Phase II 0.5 h iv d1-5 at 1.2 mg/
m2/d; 3 wk/c: ≥ 2/pt (267 
c/67 pts)

Drug diluted 5% 
dextrose in water 
(D5W) 

67 pts w breast/NSCLC/colon tumors; DLT: NP, 
TCP, anemia; PR: 3/25 (breast), 2/23 (NSCLC), 
0/19 (colon); conclusion: modest activity.

No 4 [247]

2000 Phase II 0.5 h iv d1-5 at 1.2 mg/
m2/d; 3 wk/c: ≥ 2/pt - ≤ 
4/pt

Drug diluted 5% 
dextrose in water 
(D5W) 

pts w refractory (28) & chemosensitive (34) 
SCLC; ORR: 16.6%; PR: observed; DLT: NP 
(25%), TCP (23%). Conclusion: antitumor ef-
ficacy and toxicity is equivalent to topotecan.

No 5 [248]

2002 Phase I 0.5 h iv at 0.4, 0.8, 1.6, 
3.8, 4.3 mg/m2; 3 wk/c: ≥ 
2/pt (77 c/29 pts)

Liposomal form 
w 10 mM NH4Cl 
9% sucrose

29 pts w solid tumors; DLT: NP, TCP; antitumor 
activity unclear; Phase II dose: 3.8 mg/m3 once 
every 3 weeks (3 wk/c)

No 6 [249]

2002 Phase II 0.5 h iv d1-5 at 1.2 mg/
m2/d; 3 wk/c: ≥ 2/pt

Drug diluted 5% 
dextrose in water 
(D5W)

173 pts w solid tumors (breast, colon, N/SCLC, 
ovarian); DLT: myelosuppression; antitumor 
activity unclear; PK focused.

No 7 [250]

2004 Phase II 0.5 h iv d1, d8 at 2.4 mg/
m2/d; 3 wk/c: ≥ 2/pt

Liposomal form 46 pts w head & neck squamous cell carcino-
ma; ORR: 1 pt & SD: 18 pts (18 wk); grade 1/2 
anemia in 79%, but minimal  antitumor activity

No 8 [251]

2004 Phase I 0.5 h iv d1-3 at 0.15-2.1 
mg/m2/d; 3 wk/c*

Liposomal form 37 pts w solid tumors; DLT: myelosuppression; 
MTD: 2.1 (MP), 1.8 (HP) mg/m2/d; PR: 2 pts; 

No 9 [252]

2004 Phase I 0.5 h iv d1-3 at ≥ 1.5 mg/
m2/d; 3 wk/c*

Liposomal form 20 pts w leukemia; DLT: mucositis, diarrhea; 
MTD: 3.7 mg/m2/d; minimal activity 

No 10 [253]

2004 Phase I iv d1-3 at 0.9 (Cis: 25) 
mg/m2/d; 3 wk/c 

Liposomal form 14 pts w solid tumors; DLT: NP, TCP; Phase II: 
0.7 + 25 (Cis) mg/m2/d; CR: 1 pt; PR: 3 pts 

No 11 [254]

2004 Phase II 0.5 h iv d1, d8 at 2.4 mg/
m2/d; 3 wk/c

Liposomal form 
in D5W

22 pts w topotecan-resistant ovarian cancer; 
highly manageable toxicity; no evidence of clini-
cal activity (only 8 pts w SD)

No 12 [255]

2005 Phase II/IIIa 0.5 h iv d1-3 at 1.8 (arm 
A) or on d1, d8 (arm B) 
mg/m2/d; 3 wk/c*: ≥ 2/pt

Liposomal form 
w 10 mM NH4Cl 
9% sucrose  

80 pts w relapse ovarian cancer; hematologic 
toxicity: arm A (51%) > arm B (22%); ORR: 10% 
(A: 15.1% vs. B:4.9%) 

No 13 [256]
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DX-8951f administered once every 4 days, 4 
times [234]. Additionally, DE-310 was also 
showed to have a better PK profile than exate-
can [235]. These results indicated that DE-310 
is superior to exatecan in terms of antitumor 
activity. However, follow-up studies revealed 
that DE-310 can induce various abnormalities 
in rat fetuses including menignocele [236]. 
Furthermore, clinical studies failed to demon-
strate a favorable PK or striking antitumor 
activity (Table 4). Thus, further clinical studies 
of DE-310 appear to have stopped since 2006 
(no more clinical trials were reported).

Lurtotecan (GI147211/GI-147211, NX211/NX-
211, OSI211/OSI-211) (Figure 1J)

Lurtotecan was studied for possible oral admin-
istration, but the conclusion of the study was 
that oral administration of lurtotecan results in 
a low bioavailability with relatively wide interpa-
tient variation, and the authors advised the 
intravenous route for further lurtotecan devel-
opment [239]. Interestingly, a liposomal for- 
mulation of lurtotecan (NX211/OSI211) via iv 
administration was found to be much better 
than lurtotecan iv administration in terms of 
antitumor efficacy, PK ad biodistribution in nu- 
de mice of human ovary clear cell carcinoma 
(ES-2) and human ubiquitous KERATIN-forming 
tumor cell line HeLa subline (KB)-established 
xenograft tumor models [240] as well as in 
SCID mice of human leukemia models in later 
studies [241]. Subsequently, a sensitive fluo-
rescence-based detection of liposomal-formu-
lated lurtotecan (NX211) in human plasma and 
urine was developed [242]. NX211 is easy to  
be lysed to 7-methyl-10,11-ethylenedioxy-20 
(S)-CPT under normal light and thus, light pro-
tection and reconstitution of NX211 immedi-
ately before clinical use in a light protection 
fashion are required [243]. Similar to rubitecan, 
belotecan and exatecan, while in vitro precli- 
nical studies of lurtotecan showed antitumor 
activity, clinical trials with lurtotecan or its lipo-
some-formulated version (NX211/OSI211) was 
unable to demonstrate significantly better anti-
tumor activity in comparison with topotecan 
and/or irinotecan/SN-38 in various types of 
cancer (Table 5).    

Gimatecan (ST1481/ST-1481) (Figure 1K)

Gimatecan was initially tested for oral adminis-
tration with daily schedules in preclinical stud-

ies and was found to overcome Pgp/MDR1 
resistance [257]. However, cell-based studies 
indicated that expression of BCRP resulted in 
8- to 10-fold resistance to gimatecan [258]. 
Nevertheless, preclinical studies demonstrat-
ed that gimatecan exhibited promising cytotox-
icity and antitumor potential in various types of 
human tumor xenograft models with [257, 259] 
and without [260, 261] the use of topotecan  
as a control drug. Gimatecan induction of less 
Top1 downregulation than topotecan was rea-
soned as an additional evidence of gimatecan 
to be a better Top1 activity inhibitor for its effi-
cacy than topotecan [262]. Gimatecan subse-
quently went into clinical trials (Table 6). Based 
on the weak Phase I and Phase II clinical trial 
result, further development of gimatecan using 
Phase III clinical trials may have a very high 
risk.  

Diflomotecan (BN80915/BN-80915) (Figure 
1L)

Diflomotecan is a 7-membered lactone ring CPT 
and was considered one of the most potent 
Top1 inhibitors described [268]. Various types 
of apoptosis assay testing with diflomotecan 
versus SN-38 revealed that diflomotecan in- 
duces a more pronounced apoptosis in HL60 
cancer cells in comparison with SN-38 [268]. 
Interestingly, 5 patients with an ABCG2 421C > 
A heterozygous status had 299% of diflomote-
can exposure in plasma in comparison with the 
15 patients with wild type allele [269]. Con- 
sistently, clinical trial Phase I PK studies indi-
cated that there is a wide inter-patient variabil-
ity in all doses tested [270, 271]. Furthermore, 
human glioblastoma cell lines with reduced 
Top1 expression were found to be resistant  
to diflomotecan [272]. During these studies, 
5-Phase I clinical trials were carried out and 
published between 2003 and 2009 (Table 7). 
However, up to October 2017, no Phase II clini-
cal trials for diflomotecan were published. One 
reason for this could be that researchers may 
have taken the lesson learned from rubitecan 
(Table 1), belotecan (Table 2), exatecan (Table 
3), DE-310 (Table 4), lurtotecan (Table 5), and 
gimatecan (Table 6), and realized that Phase II 
clinical trials may be too risky, since the 5-diflo-
motecan Phase I clinical trials had not obtained 
the advantages of diflomotecan over rubitecan, 
belotecan, exatecan, lurtotecan, or gimatecan 
in terms of either favorable side effect toxicity 
and/or antitumor activity (Table 7). Interestingly, 



Camptothecin analogues and their molecular targets

2367 Am J Cancer Res 2017;7(12):2350-2394

while diflomotecan has a high possibility of 
never being moved into Phase II and Phase III 
clinical trials, a recent report used the data 
derived from the 5-Phase I clinical trials (Table 
7) and made a semi-mechanistic cell-cycle type 
(proliferative cell population versus stem/latent 
cell population)-based pharmacokinetic/phar-
macodynamic model to study the chemothera-
py-induced neutropenic effects of diflomotecan 
under different dosing schedules [273]. These 
authors believe that the new model could prop-
erly describe the neutropenic effects of diflo-
motecan after very different dosing scenarios, 
and can be used to explore the potential impact 
of dosing schedule dependencies on neutrope-
nia prediction [273]. Of course, the significance 
of this study to the further development of diflo-
motecan remains to be seen.

Karenitecin (BNP1350/BNP-1350, BNP1100/
BNP-1100) (Figure 1M)

Karenitecin is a 7-silicon-containing lipophilic 
CPT analogue and was initially engineered via 
computer modeling as a better Top1 inhibitor 
due to its potential of better lactone stability 
and/or insensitivity to Pgp. However, in vivo 
studies using colon and ovarian cancer cell-
established xenografts with or without Pgp 
expression indicated that BNP1350 has very 
similar antitumor efficacy to those of irinote- 
can (CPT-11) via ip. However, we know that  
irinotecan cannot be orally administered but 
Karenitecin has similar efficacy either ip or po 
[276]. Clonogenic analyses revealed that se- 
quential treatment of colon cancer cells first 
with the thymidylate synthase inhibitor ZD1694 

Table 6. Gimatecan (ST1481/ST-1481)
Key Route & dose Formulation Cancer type and key clinical trial outcome Refs
2007 Phase I po d1-5 at 0.05-0.48 

mg/m2/d at wk1, 2, 3; 4 
wk/c: ≥ 2/pt

Formulated in gel caps 
(gelucire 44/14 as 
diluent),

108 pts w solid tumors; DLT: TCP; half-life: 77 
h; PR: 6 pts; conclusion: toxicity is schedule-
dependent 

No 1 [263]

2009 Phase I po d1/wk at 0.27-3.2 
mg/m2/wk at wk1, 2, 3; 
4 wk/c: 60 c/33 pts

Formulated in capsules 
at different doses

33 pts w advanced solid tumors; DLT: TCP, 
hyperbilirubinemia, fatigue; ORR: 0; SD: 4 pts; 
antitumor activity needs further to be defined. 

No 2 [264]

2010 Phase I po d1-5 at 0.05-0.48 
mg/m2/d at wk1, 2, 3

Hard gelatine capsules 78 pts w solid tumors; half-life: 77 h; PK fo-
cused studies; antitumor activity no mentioned.

No 3 [265]

2010 Phase II po d1-5 at 0.8 mg/m2/d; 
4 wk/c: 312 c/69 pts

Hard gelatine capsules 69 pts w recurrent ovarian, fallopian tube or 
peritoneal cancer; PR: 17 pts; SD: 22 pts; DLR: 
NP, TCP 

No 4 [266]

2013 Phase II po d1-5 at 1.22, 1.0 mg/
m2/d; 4 wk/c*: ≤ 12/pt

Oral capsules 29 pts w recurrent glioblastoma; DLR: NP, TCP, 
leukopenia;  3 pts reached the  endpoint of PFS 
for 6 months; Conclusion: minimal efficacy

No 5 [267]

Table 7. Diflomotecan (BN80915/BN-80915)
Key Route & dose Formulation Cancer type and key clinical trial outcome Refs
2003 Phase I 1/3 h iv d1 once; po d1 

-5 at 0.1-0.35 mg/m2/d; 
3 wk/c: 57c/24 pts 

Drug dissolved 
in DMA for iv or 
po routes 

22 pts w solid tumors; DLT: TCP, NP; Phase 
II/ MTD: 0.27 mg/m2/d; SD: 6 pts; PK stud-
ies is one major focus

No 1 [274]

2004 Phase I 1/3 h iv d1 once; po d1 
-5 at 0.1-0.35 mg/m2/d; 
3 wk/c: 57c/24 pts 

Drug dissolved 
in DMA for iv or 
po routes 

22 pts w advanced refractory solid tumors; 
ABCG2 allele polymorphism affect diflo-
motecan exposure; inter-patient variation 
could be large

No 2 [269]

2006 Phase I 1/3 h iv d1 once at 2, 
4, 5, 6 mg/m2; 3 wk/c: 
75 c/24 pts 

Drug dissolved 
in DMA for iv 
routes

24 pts w advanced refractory solid tumors; 
DLT: hematopoietic toxicity; SD: 7 pts; PD: 
17 pts; MTD vs. Phase II: 5 vs. 4 mg/m2

No 3 [275]

2007 Phase I 1/3 h iv d1-5 at 0.05-
0.15 mg/m2/d; 3 wk/c: 
89 c/30 pts 

Drug dissolved 
in DMA for iv 
routes

30 pts w advanced solid tumors; SD: 7 pts; 
PD: 1 pt; SD: 8 pts; MTD vs. Phase II: 0.15 
vs. 0.125 mg/m2/d; large inter-patient 
variation of PK.

No 4 [270]

2009 Phase I 1/3 h iv d1 once at 2, 
4, 7 mg/m2; 3 wk/c: 22 
c/13 pts 

Not clear in the 
publication

13 pts w advanced refractory solid tumors; 
DLT: NP; only 1 pt w minor response; PK & 
toxicity prediction is not better than po.

No 5 [271]
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for one cell doubling time followed by karenite-
cin treatment at clinically achievable concen-
trations exhibited highly synergistic effects with 
> 99.9% cell killing. Mechanistically, the pre-
treatment with ZD1694 increased the amount 
of DNA-bound Topo I by up to 4-fold and the 
DNA-damaging capability of karenitecin by up 
to 15-fold [277]. This finding is consistent with 
the regulation of head-&-neck A253 carcinoma 
cell cycle by karenitecin as a Top1 functional 
inhibitor [278, 279]. Nevertheless, in ovarian 
cancer models (A2780, IGROV-1, OVCAR-3), 
growth inhibition in all 3 xenografts induced by 
Karenitecin was ≥ 75%, which was significantly 
better than that resulting from topotecan (P < 
0.05) [280]. Consistent with karenitecin oral 
available potential [276], using ABCG2/BCRP-
overexpressed 2780K32 cells, these authors 
demonstrated that karenitecin is not a good 
substrate for BCRP in comparison with topote-
can [280]. Nevertheless, further studies of the 
role of karenitecin in cancer cell cycle regula-
tion revealed that karenitecin induces chk1 
phosphorylation at Ser345, which is a karenite-
cin resistant factor [281]. Later studies demon-
strated that 48 h pretreatment of melanoma 
cells with the histone deacetylase inhibitor val-
proic acid (VPA) could potentiate Karenitecin-
induced DNA strand breaks and apoptosis in 
melanoma cells and mouse A375 xenografts 
but Phase I/II clinical trials exhibit minimal anti-
cancer activity although no toxicity issue [282]. 
The overall clinical trial studies obtained posi-

tive results but lacked a robust demonstration 
of significant superiority to either irinotecan 
and/or topotecan (Table 8). Interestingly, while 
further clinical trials appear to have stopped 
after 2009, a recent study found that karenite-
cin and flavapridol as cell cycle regulators and 
radiosensitizers can produce synergistic eff- 
ects during radiation treatment [283]. However, 
whether this finding could bring karenitecin 
back to clinical trials again remains to be seen.       

Silatecans, silatecan (DB-67/DB67) (Figure 
1N)

Silatecans are also a class of 7-silyl-modified 
CPT analogues. The typical one is DB-67 (7-tert-
butyldimethylsilyl-10-hydroxy camptothecin). 
They are all highly lipophilic and have the poten-
tial to favor blood-brain barrier transit and more 
lactone stability in vivo [288, 289]. DB-67 was 
shown to have higher lactone levels in human 
blood and be considered as an attractive candi-
date for clinical development [290]. However, 
similar to SN-38 and topotecan, it was found 
that DB-67 strongly inhibits Top1 expression 
and low Top1 level is associated with DB-67 
resistance [291]. Nevertheless, it was found 
that liposomal DB67 is better than free DB67 in 
terms of inhibition of primary murine CT-26 
xenograft tumors but less effective than irino-
tecan [292]. However, DB67 and liposomal 
DB67 are more effective than irinotecan in the 
treatment of liver metastases after resection of 

Table 8. Karenitecin (BNP1350/BNP-1350)
Key Route & dose Formulation Cancer type and key clinical trial outcome Refs
2005 Phase II (1 h?) iv d1-5 at 1 mg/

m2/d; 3 wk/c: ≤ 16 c/pt 
Not clear in 
the publication

43 pts (most pre-treated) w metastatic 
melanoma; toxicity (main hemotopoitic) 
is manageable & reversible; CR: 1 pt; SD: 
10 pts; PD: 27 pts. 

No 1 [284]

2005 Phase II 1 h iv d1-5 at 1 mg/
m2/d; 3 wk/c: ≤ 6 + 2c/
pt 

Diluted in D5W 52 pts w relapsed (28) or refractory (24) 
NSCLC; PR: 1 pt; SD: 12 pts; major toxic-
ity: NP, TCP. 

No 2 [285]

2008 Phase I 1 h iv d1-5 at ≥1 mg/
m2/d; 3 wk/c*: ≥ 2 c/pt 

Complex solu-
tion 

32 pts w recurrent malignant glioma; 
DLT: NP, TCP; MTD: 1.5-2 mg/m2/d; little 
activity shown

No 3 [286]

2008 Phase II 1 h iv d1-5 at ≥ 1 mg/
m2/d; 3wk/c*: ≥ 2 c/pt 

Not clear in 
the publication

26 pts w recurrent or persistent ovar-
ian cancer; PR: 2 pts; CR: 1 pt; DLT: NP; 
minimal activity

No 4 [287]

2009 Phase I/II po VPA d1, d2 at 30-90; 
1 h iv d3-7 at 0.8-1 mg/
m2/d; 3 wk/c: ≥ 2/pt 

Not clear in 
the publication

33 pts w stage IV melanoma; SD in one 
group: 7/15 pts; DLT: somnolence; VPA 
on d1, d2 at 75 mg/kg/d, followed by 
karenitecin d1-5 1 mg/kg/d without over-
lapping toxicities

No 5 [282]
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the primary tumor [292]. Additional findings 
include that 1) DB67 is a Top1-targeted radia-
tion sensitizer [293]; and 2) in vivo xenograft 
testing of DB67 versus 7-membered lactone 
ring DB67 (DB91) demonstrated that DB91 
basically loses antitumor activity [294]. Based 
on these preclinical research outcomes, clini-
cal studies of DB67 were likely halted or never 
started, since thus far no clinical studies on 
DB67 have been reported. 

Namitecan (ST1968/ST-1968) (Figure 1O)

Namitecan is a relative new hydrophilic CPT 
analogue (Figure 1O). Use of a large panel of 
human cancer cell line-established tumor mod-
els including irinotecan-resistant once demon-
strated that although less potent than SN-38 in 
vitro, iv administration of ST1968 caused a 
marked tumor inhibition (superior to that of iri-
notecan) in most tested models [295]. Inte- 
restingly, yeast spot tests indicated that while 
both CPT and ST1968 reduced the growth of 
yeast cells exogenously expressing wild-type 
human Top1 without affecting cell growth for 
the yeast cells exogenously expressing the 
human Top1 G363C and A653P mutants, 
ST1968 was able to inhibit yeast cells exo- 
genously expressing the human Top1 K720E 
mutant [295]. This suggested that inhibition  
of cell growth by ST1968 may rely on Top1 fun- 
ction more than those of CPT. Consistently, 
ST1968 was shown to be a better Top1 activity 
inhibitor and also exhibited superior antitumor 
activity in a panel of human squamous cell car-
cinoma (SCC) cell line-established xenograft 
tumors overall in comparison with irinotecan 
[296]. The studies also found that ST1968 
treatment induced a persistent DNA damage 
response, as documented by phosphorylation 

of p53, RPA-2 and histone H2AX, which was 
associated with a marked cellular/tumor drug 
accumulation [296]. However, results from an- 
other study suggest that inhibition of check-
point kinases by ST1968 may likely be involved 
in improving the efficacy of ST1968 [297]. 
Studies using A431 versus topotecan (TPT)-
resistant A431/TPT cell pair demonstrated that 
ST1968 has a comparable accumulation and 
retention in sensitive (A431) and resistant 
(A431/TPT) cells, in spite of expression of Pgp 
in resistant cells, while the uptake and reten-
tion of topotecan were dramatically reduced  
in both tumor cell lines, especially in the resis-
tant one [298]. Consistently, ST1968 exhibited 
superior antitumor activity in both A431 and 
A431/TPT-established xenografts in compari-
son with topotecan [298]. Studies using high 
Top1-expressing pediatric sarcoma U2OS and 
RD/TE670 cell line-established xenografts de- 
monstrated that at the optimal and half optimal 
doses with q4d x 4 schedules, ST1968 showed 
an efficacy superior to irinotecan/CPT-11, and 
ST1968 was able to temporarily eliminate 
U2OS tumor and regress RD/TE670 tumors 
[299]. Use of pediatric neuroblastoma models 
obtained similar in vivo results for ST1968 anti-
tumor efficacy [300]. Furthermore, ST1968 in 
combination with cisplatin or caboplatin [300] 
in SK-N-AS xenograft models or with cetuximab 
in A431, A431/TPT, Caski and AiH xenograft 
models [301] exhibited high synergistic effects 
to inhibit or eliminate tumors. Based on these 
preclinical studies, a Phase I clinical trial with 
various solid tumors was carried out (Table 9). 
In this study, it is clear that only two patients 
with PR provide no clue to predict ST1968 anti-
tumor activity. Therefore, Phase II clinical trials 
for ST1968 remain to be seen for monotherapy 
or combination treatment for ST1968.

Table 9. Namitecan (ST1968/ST-1968)
Key Route & dose Formulation Cancer type and key clinical trial outcome Refs
2015 Phase I 2 h iv d1, d8 at 2.5-20 or 

d1 at 17.5-30 mg (flat); 3 
wk/c*: ≥ 1c/pt 

Unclear. ST1968 
from Sigma-Tau 
(Rome, Italy) 

34 (schedule 1, S1) + 29 (S2) pts w pre-
treated solid tumors; DLT: NP; RD: 15 mg 
(S1) & 23 (S2) mg; PR: 2 pts.

No 1 [302]

Table 10. BN80927 (BN 80927, elomotecan)
Key Route & dose Formulation Cancer type and key clinical trial outcome Refs
2012 Phase I 0.5 h iv d1 at 1.5-75 

mg (flat); 3 wk/c: ≥1 c/
pt - ≤ 10 c/pt 

Unclear. Drug from 
Ipsen Pharma 

56 pts w advanced solid tumors; DLT: NP; 
MTD/RD: 75 mg & 60 mg; pts in the RD 
cohort got 41.7% SD in duration of 123.6 
± 43.4 d

No 1 [305]
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BN80927 (BN 80927, elomotecan) (Figure 1P) 

BN80927 was reported to be an inhibitor of 
both Top1 and Top2, and showed pronounc- 
ed cytotoxicity against human HT29, SKOV-3, 
DU145 and MCF7 cancer cell lines [303]. Use 
of PC3 and Du145 prostate cell line-estab-
lished xenografts demonstrated that oral ad- 
ministration of BN80927 resulted in more effi-
cacious than topotecan or irinotecan admini- 
stered via ip in different schedules ((every day 
for 14 days, twice a day for 14 days, every week 
for 3 weeks, and 4-days-on/3-days-off for three 
cycles) [304]. However, clinical studies revealed 
minimal antitumor activity (Table 10).

DRF-1042 (DRF1042) (Figure 1Q)

DRF1042 is an oral active CPT analogue. There 
are not many preclinical studies on DRF1042 
(rather a few meeting abstracts). This com-
pound went into clinical trials in Dr. Reddy’s 
Laboratories Lid in India as soon as a HPLC-
based quantification of the drug in plasma were 
established [306]. After two Phase I clinical tri-
als in 2004 and 2005, further development of 
DRF1042 appears to have stopped (Table 11).  

MAG-CPT (PNU 166148/PNU166148) 

MAG-CPT is pro-drug derived from the CPT p20 
covalently linked to a water-soluble polymeric 

carrier. Three Phase I clinical trial results (Table 
12) lead to the withdrawal of MAG-CPT from 
clinical development [309].

BAY 38-3441 (BAY 56-3722)

BAY 38-3441 is a covalently glycoconjugated 
CPT on CPT p20. As mentioned in the 3 pub-
lished clinical trials (Table 13), it appears that 
multiple clinical trials were initiated at approxi-
mately the same time under the financial sup-
port from Bayer Inc.. The Phase II clinical trials 
were basically terminated more than 10 years 
ago without publication. However, the research-
ers involved in the Phase II studies felt that it 
was their obligation to share the interrupted 
phase II study for reporting the fate of this gly-
coconjugated CPT and presenting the unique 
situation of a clinical hold during a phase II 
study [312]. Such reports of negative findings 
are very helpful and thus important to the 
research and development field. 

CRLX101 (IT-101)

CRLX101 (IT-101) is a b-cyclodextrin (b-CD)-
covalently conjugated CPT on CPT p20 via ester 
bonds [315, 316] and is a self-assembling 
nanoparticle drug. PK and biodistribution stud-
ies revealed that IT-101 iv administration in 
rats and nude mice bearing human LS174T 
colon tumors exhibited prolonged plasma half-

Table 11. DRF-1042 (DRF1042)
Key Route & dose Formulation Cancer type and key clinical trial outcome Refs
2004 Phase I po d1-5 at 1.5-270 mg/

m2/d in 2 wk; 3 wk/c: (73 
c/25 pts) 

Unclear. Trial was 
done in Dr. Reddy’s 
Lab

25 pts w refractory solid tumors; DLT: diarrhea, 
myelosuppresssion; MTD/Phase II: 120 mg/m2/d 
vs. 80 mg/m2/d; CR: 2 pts; PR: 2 pts; SD: 4 pts.

No 1 [307]

2005 Phase I po d1-5 at 81 mg/m2/d in 
2 wk; 3 wk/c: (10 c/6 pts) 

Capsule. Trial was 
done in Dr. Reddy’s 
Lab

25 pts w refractory solid tumors; DLT: TCP, diar-
rhea; RD for Phase II: 80 mg/m2/d; SD: 1 pt; cap-
sule correlated with but better than suspension

No 2 [308]

Table 12. MAG-CPT (PNU 166148/PNU166148)
Key Route & dose Formulation Cancer type and key clinical trial outcome Refs
2002 Phase I 0.5 h iv d1-3 at ≥ 17 mg/

m2/d; 4 wk/c: 39 c/16 
pts 

Drug complex 
reconstituted in 
saline 

16 pts w malignant solid tumors; PK 
prolonged; DLT: serious bladder toxicity; 
no response was found; SD: 1 pt.

No 1 [310]

2003 Phase I 24 h iv once at 60 mg/m 
for PK studies

Unclear. 10 pts w colorectal carcinoma; MAG-CPT 
was delivered at similar levels to tumor 
and normal tissue. Not focus antitumor 
activity.

No 2 [311]

2004 Phase I 0.5 h iv once at 30-240 
mg/m2; 4 wk/c: 47 c/23 
pts 

Lyophilized drug 
reconstituted in 
saline 

16 pts w malignant solid tumors; DLT: 
diarrhea, myelosuppression NP sepsis; 
MTD/RD: 200 mg/m2.

No 3 [309]
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life and enhanced distribution to tumor tissue 
compared to CPT alone; and also active CPT is 
released from the conjugate within the tumor 
for an extended period of time [316]. Antitumor 
efficacy of IT-101 was evaluated in nude mice 
bearing six human cancer cell line-established 
xenografts (CRC: LS174T and HT29; NSCLC: 
H1299; SCLC: H69; pancreatic cancer: Panc-1; 
breast cancer: MDA-MB-231) and a luciferase 
(luc)-labeled Ewing’s sarcoma (TC71-luc) [317]. 
Complete tumor regression was reached at the 
best schedule and dose in all animals bearing 
H1299 tumors and in the majority of animals 
with disseminated Ewing’s sarcoma tumors; 
the studies also found that antitumor activity 
and toxicity is schedule-dependent [317]. In the 
xenograft setting condition, IT-101 antitumor 
activity appeared to be better than irinotecan/
CPT-11 [317]. Another study with human lym-
phoma xenograft models showed that as com-
pared with CPT-11 and SN-38, IT-101 and CPT 
had higher inhibition of DNA Top1 catalytic 
activities, and IT-101 significantly prolonged 
the survival of animals bearing human xeno-
grafts when compared with CPT-11 at its MTD 
in mice [318]. Similarly, in human gastric can-
cer cell line BGC823-established xenograft 
model, CRLX101 exhibited antitumor activity 
better than CPT-11 via iv administration, and 
the authors also found that CRLX101 signifi-
cantly decreased the expression of carbonic 
anhydrase, VEGF, and CD31 proteins in treated 
tumors indicating an inhibition of hypoxia and 
angiogenesis [319]. Furthermore, in a human 
breast cancer mouse model, concurrent admin-
istration of CRLX101 (iv) with bevacizumab (ip) 
impeded bevacizumab-mediated induction of 
HIF-1a and cancer stem cells (CSCs) in breast 
tumors, and resulted in greater tumor regres-

sion and delayed tumor recurrence in compari-
son with bevacizumab alone [320]. Tumor reim-
plantation experiments demonstrated that the 
combination therapy effectively targets the 
CSC populations [320]. Similarly, CRLX101 was 
showed to be as potent as CPT in vitro to radio-
sensitize CRC cells, and in human CRC xeno-
graft tumor models, addition of CRLX101 to 
standard chemoradiotherapy significantly in- 
creased therapeutic efficacy by inhibiting DNA 
repair and HIF1a pathway activation in tumor 
cells [321]. CRLX101 in combination with 5-Fu 
produced the highest therapeutic efficacy with 
significant low gastrointestinal toxicity for CR- 
LX101 compared with CPT in combination with 
radiotherapy [321]. Another comparative study 
demonstrated that CRLX101 is better in terms 
of inhibiting HIF1a, suppressing tumor growth, 
and extending mouse survival compared with 
topotecan [322]. CRLX101 in combination with 
bevacizumab obtained significant better results 
than either alone, and this concept appears to 
be supported by an ongoing phase I/IIa clinical 
study of CRLX101 monotherapy that showed 
measurable tumor reductions in 74% of patients 
and a 16% RECIST response rate to date [322]. 
Furthermore, it was found that CRLX101 nan- 
oparticles localize in human tumors and not in 
adjacent, nonneoplastic tissue after iv adminis-
tration [323]. In human glioma in vitro and in 
vivo models, CRLX101 was shown to possess 
antitumor abilities by inducing cell cycle arrest 
and apoptosis in glioma cells and inhibiting 
tumor angiogenesis, and prolonging the lifes-
pan of mice bearing intracranial gliomas from 
vehicle-treated control for ~31 days to CRLX- 
101-treated mice for ~41 days [324]. In mouse 
models of orthotopic primary triple-negative 
breast tumor xenografts, a long-term efficacy 

Table 13. BAY 38-3441 (BAY 56-3722)
Key Route & dose Formulation Cancer type and key clinical trial outcome Refs
2004 Phase I 0.5 h iv d1 at 20-600 

or d1-3 at 126-416 mg/
m2/d; 3 wk/c*: 1-7 c/pt 

Lyophilized power 
dissolved in D5W 

81 pts w advanced solid tumors; DLT: 
renal toxicity, granulocytopenia, TCP; RD: 
320 mg/m2/d (0.5 h iv d1-3); SD: 2 pts 
(18-21 wk).

No 1 [313]

2005 Phase I 0.5 h iv d1-5 at 320 
mg/m2/d; 3 wk/c*: 
1-10 c/pt 

Lyophilized power 
dissolved in D5W 

31 pts w advanced/refractory solid 
tumors; DLT: diarrhea, granulocytopenia, 
NP; SD: 9 pt - ~2.7 months (range: 2.3-
20.6 months).

No 2 [314]

2012 Phase II 0.5 h iv d1-3 at 14-295 
mg/m2/d; 3 wk/c*: ≥ 
1 c/pt 

Unclear but likely 
same as above 

24 pts w irinotecan-resistant advanced 
colon cancer; 18 pts discontinued due 
to disease progression; ≥ 1 TX-emergent 
event in 23 pts 

No 3 [312]
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evaluation of CRLX101 demonstrated that 
CRLX101 alone or combined with bevacizumab 
was highly efficacious, leading to complete 
tumor regressions, reduced metastasis, and 
greatly extended survival of mice with meta-
static disease [325]. CRLX101 led to improved 
tumor perfusion and reduced hypoxia by sup-
pressing HIF1a and thus potentially counte- 
racting undesirable effects of elevated tumor 
hypoxia caused by bevacizumab [325].

During the preclinical studies above, two Phase 
I/IIa clinical trials were performed and, the out-
come was positive, overall, including the case 
of metastatic RCC (Table 14). Based on the 
encouraging on-going preclinical and clinical 
data reviewed above, a comprehensive Phase II 
studies with two arms across 34 centers in the 
United States and Korea were launched and 
the data were published in 2017. Specifically, 
since in the Phase I/IIa (Ib/II) trial CRLX101 + 
bevacizumab was well tolerated with encourag-
ing activity in metastatic renal cell carcinoma 
(mRCC) [326], a randomized phase 2 trial com-
paring CRLX101 + bevacizumab versus stan-
dard of care (SOC) in refractory mRCC were 
conducted [327]. Patients with mRCC and 2-3 
prior lines of therapy were randomized 1:1 to 
CRLX101 + bevacizumab versus SOC, defined 
as investigator’s choice of any approved regi-
men not previously received. The primary end-
point was progression-free survival (PFS) by 
blinded independent radiological review in 
patients with clear cell mRCC. Secondary end-
points included overall survival (OS), objective 
response rate (ORR) and safety. One hundred 
eleven patients were randomized and received 
≥ 1 dose of drug (CRLX101 + bevacizumab, 55; 
SOC, 56). Within the SOC arm, patients received 
single-agent bevacizumab (19), axitinib (18), 
everolimus (7), pazopanib (4), sorafenib (4), su- 
nitinib (2), or temsirolimus (2). In the clear cell 
population, the median PFS on the CRLX101 + 
bevacizumab aim was 3.7 months (95% confi-
dence interval [CI]: 2.0-4.3) versus the SOC 
arm was 3.9 months (95% CI: 2.2-5.4), respec-
tively (stratified Log-rank P = 0.831). The ORR 
by IRR was 5% with CRLX101 + bevacizumab 
versus 14% with SOC (Mantel-Haenszel test, P 
= 0.836) [327]. This appears to be a very disap-
pointing negative result. Nevertheless, consis-
tent with the previous study [326], the CRLX101 
+ bevacizumab combination was generally well 
tolerated, and no new safety signal was identi-
fied. These authors concluded that despite 

promising efficacy data on the earlier phase Ib/
II (I/IIb) trial of mRCC, this randomized trial did 
not demonstrate improvement in PFS for the 
CRLX101 + bevacizumab combination when 
compared to approved agents in patients with 
heavily pretreated clear cell mRCC [327].

T-0128 (MEN4901) 

T-0128 is a pro-drug derived from the CPT ana-
logue T-2513 (delimotecan, Figure 1R) conju-
gating with carboxymethyl (CM) dextran via a 
Gly-Gly-Gly linker. It was shown that T-2513 
directly interacts with DNA-Top1 complex as 
CPT, and using rat Walker-256 carcinoma in rat 
xenograft models, T-0128 was shown to be 10 
times as active as T-2513 [329]. Similarly, 
T-2513 at 80 mg/kg (q7dx3, iv) only delayed 
human lung tumor cell line LX-1 xenograft 
growth, while T-0128 at 10 mg/kg (q7dx3, iv) 
was able to eliminate the tumor in nude mice 
and also using the CPT-resistant HT29 CRC cell 
line-established xenograft, T-0128 at 20 mg/
kg (q7dx3, iv) was able to significantly regress 
tumors in nude mice, while T-2513 at 80 mg/kg 
(q7dx3, iv) and CPT-11 at 100 mg/kg (q7dx3, iv) 
only slightly delay HT29 tumor growth [329]. PK 
studies using Walker-256 tumor-bearing rats 
showed that after iv administration of T-0128, 
the conjugate continued to circulate at a high 
concentration for an extended period, resulting 
in the accumulation of drug in liver, spleen and 
tumor much higher than in kidney, heart, lung 
and bone marrow tested; in contrast, T-2513 
disappeared rapidly from the body and tumor 
after iv administration [329]. Another similar 
study using different human tumor cell line-
established xenografts (gastric: H-81; colon: 
H-110; lung: Mqnu-1, H-74; esophageal: H-204; 
liver: H-181 and pancreatic: H-48) via iv routes 
with q7dx4 schedules showed that a marked 
antitumor activity in each of these tumor mod-
els, producing tumor shrinkage in the models  
of H-204 and H-181 at its MTD of 80 mg/kg  
via q7d x 4 schedule, and tumor-shrinking or 
marked growth-inhibitory effects in the models 
of H-81, H-110, Mqnu-1, H-74, and H-48 carci-
nomas at its 1/3MTD (q7d x 4) [330]. The third 
study showed that while the approved dacarba-
zine drug for metastatic melanoma was inef-
fective in the Me15392 melanoma xenograft 
model. T-0128/delimotecan exhibited signifi-
cant antitumor activity against this xenograft 
tumor better than or equivalent to CPT-11 
[331]. Further studies of the T-2513 release 
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from T-0128 revealed that it is the tumor-asso-
ciated macrophage playing a major role in 
update of T-0128 and release of T-2513 [332, 
333]. More recently, using a GFP-labeled HT29 
colon cancer cell for an orthotopic tumor model, 
it was shown that T-0128 had a high efficacy, 
better ability than those of irinotecan, to inhibit 
HT29 cell lymph node metastasis as well as 
against the primary tumor [334]. One phase I 
clinical trial was performed in 2008 (Table 15). 
It is clear that while more clinical trials may be 
risky, a go or no go decision remains unsolved. 

Other CPT analogues, CPT conjugates or CPT 
nanoparticles

NSC606985 is a CPT analogue (Figure 1S) that 
was found to induce apoptosis (caspase-3 acti-
vation and loss of mitochondrial potential) in 
acute myeloid leukemia (AML) cell lines NB4 
and U937 through rapid activation of protein 
kinase C d (PKCd), and NSC606985-induced 
apoptosis can be completely blocked by co-
treatment with the PKCd-specific inhibitor rot-
tlerin [336]. Although a number of preclinical 
studies were followed up [337-341], no clinical 
studies have yet been reported.

Chimmitecan (Figure 1T) is a 9-substituted lipo-
philic CPT and is an active metabolite of pro-
drug simmitecan (p10 has the same chemical 
group as irinotecan has on p10). It was found 
that chimmitecan exhibited more potent cyto-
toxicity than SN38 and topotecan with compa-
rable effects on Top1, in terms of inhibiting 
Top1 catalytic activity and trapping and sta- 
bilizing covalent Top1-DNA complexes [342]. 
Nanomolar levels of chimmitecan caused im- 
pressive DNA damage, G2/M phase arrest, and 
apoptosis in human leukemia HL60 cells [342]. 
In the experimental setting condition using the 
xenograft tumor models established from HCT-
116, MDA-MB-435, BEL-7402, and A549 hu- 
man cancer cell lines in nude mice via iv admin-
istration, chimmitecan showed greater potency 
than CPT-11 against the BEL-7402 and A549-
established tumors [342]. The method used to 
determine chimmitecan or its prodrug simmite-
can in plasma and organ tissues was devel-
oped [343] and the PK profile of the drugs in 
rats, dogs and nude mice were studies [344]. 
Interestingly, in rats and nude mice bearing 
human hepatic cancers, most organs had sig-
nificantly higher concentrations of simmitecan 
than the corresponding plasma levels. However, 

Table 14. CRLX101 (IT-101)
Key Route & dose Formulation Cancer type and key clinical trial outcome Refs
2013 Phase I/
IIa

1 h iv at 6, 12, 18 
mg/m2/wk or at 12, 
15, 18 mg/m2/biwk*

Self-assembled 
nanoparticles 

62 pts w advanced solid tumors; bywkly 
better tolerated (MTD: 15 mg/m2); DLT: my-
elosuppression (NP), fatique; SD: 28 pts;

No 1 [328]

2016 Phase I/IIa 1 h iv at 12, 15 mg/
m2, + bevacizumab, 
10 mg/kg, biwkly*;

Self-assembled 
nanoparticles 

22 pts w metastatic renal cell carcinoma 
(mRCC); DLT not reached; PR: 5 pts; 4 pts 
obtained > 4 months PFS

No 2 [326]

2017 Phase II Iv d1, d15 at 15 mg/ 
m2, + bevacizumab, 
10 mg/kg, 4 wk/c*

Self-assembled 
nanoparticles 

No improvement in PFS for the CRLX101 + 
bevacizumab versus the approved agents in 
pts with heavily pretreated clear cell mRCC

No 3 [327]

Table 15. T-0128 (MEN4901, delimotecan)
Key Route & dose Formulation Cancer type and key clinical trial outcome Refs
2008 Phase I 3 h iv once/6wk at 150-

5400 mg/m2; 35 c/22 
pts in 8 dose levels

Lyophilized 
powder diluted 
in saline 

22 pts w refractory solid tumors; DLT: ≥ 2,400 
mg/m2; PR: 2 pts; half-life (T1/2) = 109 h; RD: 
1,800 mg/m2 once every 6 wk for 3 h iv.

No 1 [335]

Table 16. CT-2106 / CT2106
Key Route & dose Formulation Cancer type and key clinical trial outcome Refs
2007 Phase I 1/6 h iv d1, d8, d15 at 

25-35 mg/m2; 4 wk/c*: 
≥ 1-12 c/pt 

Lyophilized drug 
reconstituted in 
sterile water 

26 pts w refractory solid tumors; DLT: TCP, 
fatigue; MTD: 25 mg/m2 weekly. SD: 3 pts 
but no CR or PR.

No 1 [345]
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in tumor tissues, simmitecan levels were com-
parable to those of plasma, whereas chimmite-
can levels were lower than the simmitecan lev-
els [344]. It is clear that more preclinical 
studies, especially for antitumor efficacy poten-
tial, are needed before making a go decision for 
clinical trials with chimmitecan and/or simmi- 
tecan.

CT-2106 is a poly-L-glutamate-conjugated CPT. 
This linkage was claimed to stabilize the active 
lactone form of CPT and enhance aqueous sol-
ubility. It was also postulated that the poly-L-
glutamate might increase tumor delivery of CPT 
through enhanced permeability and retention 
effect in tumor. Therefore, a clinical phase I trial 
was carried out (Table 16) and found that the 
PK profile for conjugated CPT did not exhibit 
significant advantage over unconjugated CPT 
[345].

HM910 (HM-910) is a recently published CPT 
p20-sodium bisulfate-conjugated derivative. 
HM910 was found to inhibit multiple myeloma 
(MM) cell growth in vitro at a concentration 
range of 0.1-10 µM and xenograft tumor growth 
in nude mouse models at a dose range of 
18-35 mg/kg via ip with a schedule of q4d x 2. 
In the xenograft experimental setting with eq- 
uivalent body weight change levels to these of 
topotecan, HM910 exhibited anti-MM tumor 
activity better than or equivalent to topotecan 
[346]. Interestingly, similar to but distinct from 
the CPT analogue NSC606985’s case in AML 
cancer models [336], HM910 mechanistically 
reduced the mitochondrial transmembrane 
potential (DeltaPsim) via an increase in reac-
tive oxygen species (ROS), which induced cyto-
chrome c release and the activation of mito-
chondrial-dependent apoptotic pathway [336]. 
HM910 treatment also triggered cell cycle 
arrest in G1 phase via downregulating the ex- 
pressions of CDK 4, CDK 6, and cyclin D1. 
Based on the note provided in the paper [336], 
HM910 was synthesized by Fangsheng Phar- 
maceuticals, Inc. and was in Phase I clinical tri-
als in China from 2014. However, the Phase I 
clinical trial results are currently not available. 

ZBH-1205 (ZBH1205) is a CPT analogue with a 
chemical structure similar to irinotecan and 
SN-38 (Figure 1U). A recent publication showed 
that using a panel of human tumor cell lines 
including the multi-drug resistant cell line 
SK-OV-3/DPP as well as HEK293, ZBH-1205 

exhibited IC50 values ranged from 0.0009 µM 
to 2.5671 µM, which were consistently lower 
than IC50 values of CPT-11 or SN38 [347]. The 
authors also demonstrated that ZBH-1205 was 
more effective than CPT-11 or SN38 at stabiliz-
ing Topo-1-DNA complexes and inducing tumor 
cell apoptosis [347]. Based on their in vitro 
studies, these authors claimed that ZBH-1205 
is a promising chemotherapeutic agent to be 
further assessed in large-scale clinical trials. 
However, in our view more preclinical studies, 
especially with appropriate human tumor ani-
mal models, will be needed before considering 
whether to initiate Phase I clinical studies for 
ZBH-1205.

WCN-21 is a CPT p20 conjugate by introducing 
a thiocarbamide group to the 20 position of 
CPT and it appears that WCN-21 nanocrystals 
increased WCN-21 solubility and efficacy [348], 
but whether it will be worthy of  further develop-
ment remains to be a question.

A series of CPT derivatives via uracil-1’(N)-ace-
tic acid ester linkage on the p20 of CPT were 
synthesized and tested for antitumor activity 
[349]. However, in comparison with other simi-
lar studies, their uniqueness and superiority in 
antitumor activity remain to be explored before 
thinking any of these CPT analogues to be 
moved toward clinical trials.

Overall, based on the clinical trial outcomes 
from CPT p20 conjugates, we feel that more 
attempts to move a CPT p20 conjugate for 
treatment of human cancer may likely be a 
futile effort. Our point is that if a compound 
itself is not good enough (e.g. possessing sig-
nificant weakness) to become a drug, it may be 
risky in terms of obtaining a breakthrough by 
conjugation. 

Additionally, some studies directly made CPT 
into non-covalent nanoparticles. For example, 
CPT-TMC is a non-covalent TMC-encapsulated 
CPT nanoparticles, which was generated by 
drop-wise addition of CPT/DMSO solution into 
water-based N-trimethyl chitosan (TMC) solu-
tion, and the resulting colloid solution was then 
ultra-sonicated and dialyzed to obtain the CPT-
TMC nanoparticles [350]. The studies demon-
strated CPT-TMC is better than free-CPT in 
terms of stability, anti-melanoma cell prolifera-
tion and induction of apoptosis [350].
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Novel non-CPT Top1 inhibitors

Genz-644282 is a structurally novel non-CPT 
Top1 inhibitor (Figure 1V). It was shown that 
Genz-644282 and its metabolites induce Top1 
cleavage at similar, as well as unique geno- 
mic positions, compared with CPT [351]. Genz-
644282 exhibited partial cross-resistance in 
cell lines resistant to CPT. In addition, a limited 
cross-resistance to Genz-644282 was found  
in the Top1 knockdown HCT116 and MCF7  
cell lines, as well as in human adenocarcino- 
ma cells (KB31/KBV1) that overexpress Pgp/
MDR1 [351]. Using various human cancer cell 
line-established xenografts (CRC: HCT116, 
HT29, HCT15, DLD-1; melanoma: LOX-IMVI; 
RCC: 786-O; NSCLC: NCI-H460, NCI-H1299), 
the study demonstrated that Genz-644282  
has antitumor activity superior or equivalent  
to those of the standard drug comparators for 
the corresponding disease (irinotecan, dacar-
bazine, docetaxel) [352]. In various pediatric 
cancer cell line-established xenograft models, 
using the schedule of q3w x 2 repeated at day 
21, Genz-644282 at its MTD (4 mg/kg) exhib-
ited maintained complete responses (MCR) in 
6/6 evaluable solid tumor models. At 2 mg/kg 
Genz-644282 exhibited CR or MCR in 3/3 
tumor models that were relatively insensitive to 
topotecan, but there were no objective respo- 
nses at 1 mg/kg; further testing at 2 mg/kg 
showed that Genz-644282 induced objective 
regressions in 7 of 17 (41%) models [353]. Th- 
ese are encouraging preclinical results and it 
will be interesting to see whether the encourag-
ing data can be translated into positive clinical 
results in cancer patients.

A series of 4-substituted anthrax [2, 1-c] [1, 2, 
5] thiadiazole-6,11-dione derivatives were syn-
thesized (e.g. non-CPT1, Figure 1W) and evalu-
ated as novel non-CPT Top1 inhibitors, which 
showed anti-proliferative activity against vari-
ous types of cancer cells [354]. 

Research toward non-CPT Top1-inhibiting com-
pounds is an interesting research area and is 
still in its early development stage. A weakness 
of developing such Top1 inhibitors may have 
the same inherent limitations possessing by 
the CPTs described above, unless it will be 
found that some of such non-CPT compounds 
use novel MOA and act on novel disease-asso-
ciated key protein targets.

Concluding remarks

Thus far, the field has largely used Top1 inhibi-
tion intensity to predict the antitumor potential 
of a CPT analogue. Now, accumulating evidence 
supports the possibility that certain CPT ana-
logues can exert significant non-Top1-mediated 
antitumor activity; in fact, Top1 activity inhibi-
tion by such analogues could be involved in the 
drug side effects, since normal tissue and cell 
renewal requires Top1 for DNA replication. The 
fact is that while most (if not all) of the CPT  
analogues in clinical development that were 
reviewed in this article exhibited stronger inhi-
bition of Top1 activity than either irinotecan 
and/or topotecan; yet, extensive clinical trials 
with these analogues did not show a significant 
advantage over irinotecan or topotecan in anti-
tumor activity and/or high side-effect toxicities. 
We predict that if further efforts at finding CPT 
analogues still focus on stronger inhibition of 
Top1 function/activity as the primary criterion 
for preclinical and clinical development of CPT 
analogues, we may continuously be unable to 
make a breakthrough in the development of 
next generation of novel CPT analogues with 
high efficacy and low toxicities for human dis-
ease (e.g. cancer) treatment. Alternatively, we 
propose to develop CPT derivatives that exhib-
its low inhibitory effects on Top1 function/activ-
ity, while they can target multiple key disease-
associated genes and/or gene products. Such mol- 
ecules could be the key to finding drugs that 
possess high efficacy and low toxicity for fight-
ing cancer and other human diseases. 
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