Original Article

HOXD-AS1 promotes cell proliferation, migration and invasion through miR-608/FZD4 axis in ovarian cancer

Yanyan Wang, Wenjuan Zhang, Yuyan Wang, Shanfeng Wang

Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China

Received October 24, 2017; Accepted November 1, 2017; Epub January 1, 2018; Published January 15, 2018

Abstract: Evidence is accumulating that long non-coding RNAs (lncRNAs) exert crucial roles in the incidence and progression of tumors. HOXD cluster antisense RNA 1 (HOXD-AS1), a cancer-related IncRNA, has been frequently reported to be involved in tumorigenesis and dysregulated in multiple types of human cancers; however, little is known about its role in ovarian cancer (OC). This study aimed to explore the role of HOXD-AS1 in OC and elucidate the potential mechanism involved. In the current study, HOXD-AS1 was observed to be upregulated in both OC tissues and cell lines. Besides, elevated expression of HOXD-AS1 was found to be associated with poor prognosis of OC patients. Furthermore, functional studies demonstrated that HOXD-AS1 promoted OC cell proliferation and colony formation, and enhanced the migration and invasion capabilities of OC cells. Mechanistically, HOXD-AS1 was detected to positively regulate the expression of frizzled family receptor 4 (FZD4) by competitively binding to miR-608. Taken together, HOXD4-AS1 exerts tumor-promoting functions through miR-608/FZD4 axis in OC. Our findings indicate that HOXD-AS1 may be used as a promising therapeutic target and a novel prognostic biomarker for OC.

Keywords: HOXD-AS1, miR-608, FZD4, ovarian cancer

Introduction

Ovarian cancer (OC) is the most fatal gynecological malignancy and the fourth leading cause of cancer-related deaths among women [1, 2]. It was estimated that 22,280 new cases of OC were diagnosed and 14,240 patients died from OC in the United States in 2016 [3]. The high mortality is partially attributed to the fact that the early-stage OC is mostly asymptomatic [4-6]. Although conventional therapeutic strategies have been developed, the long-term prognosis of OC patients is still poor. Therefore, novel and effective therapeutic approaches are in urgent demand.

Long non-coding RNAs (lncRNAs) are a large type of mRNA-like non-coding transcripts longer than 200 nucleotides, which do not serve as templates for protein synthesis [7, 8]. Besides, IncRNAs are expressed in tissue-specific and time-specific manners. Recently, IncRNAs have gained increasing attention and been reported to be implicated in a wide range of human cancers [9-11]. Accumulating evidence has revealed that lncRNAs may exert their roles in tumorigenesis by competitively binding to cancer-related microRNAs (miRNAs) [12-14]. Antisense long non-coding RNAs (aslncRNAs) are a class of lncRNAs that are oriented in the antisense direction relative to protein-coding mRNA transcripts [15, 16].

It is acknowledged that HOXD is a member of homeobox (HOX) gene family, which plays crucial roles in the development of embryos and organs [17, 18]. HOXD cluster antisense RNA 1 (HOXD-AS1), a novel IncRNA, is transcribed from the HOXD gene cluster located on human chromosome 2q31.2 in an antisense manner. Increasing evidence has revealed that ectopic expression of HOXD-AS1 is involved in the occurrence and progression of diverse types of human tumors, including hepatocellular carcinoma, bladder cancer, prostate cancer, neuroblastoma and gastric cancer [19-23]; however, its role in OC remains to be elucidated.

The present study aimed to explore the role of HOXD-AS1 in OC and clarify the potential molec-
ular mechanisms involved. In the current study, we found HOXD-AS1 was notably upregulated in OC tissues and cell lines. Moreover, functional studies showed that HOXD-AS1 promoted OC cell proliferation, migration and invasion. Additionally, mechanistic studies demonstrated that HOXD-AS1 exerts tumor-promoting roles through miR-608/FZD4 axis in OC.

Materials and methods

Patients and tissue samples

OC tissues and the corresponding adjacent non-cancerous tissues were obtained from 16 patients in the First Affiliated Hospital of Jinzhou Medical University (Jinzhou, China) from February 2014 to December 2016. Corresponding adjacent normal tissues were obtained at a distance of 5 cm from OC tissues. All clinical specimens were immediately frozen in liquid nitrogen and stored at -80°C for further experiments. This study was carried out in accordance with the guidelines by the Ethics and Scientific Committee of Jinzhou Medical University. Written informed consent was obtained from all patients enrolled in the current study.

Cell culture

Three human OC cell lines (Caov-3, SK-OV-3 and OVCAR-3) and a normal human ovary cell line (IOSE80) were obtained from Shanghai Cell Bank, Chinese Academy of Sciences (Shanghai, China). These cells were cultured in DMEM medium (Gibco, Grand Island, New York, USA) supplemented with 10% fetal bovine serum (FBS, Sigma-Aldrich, St. Louis, MO, USA). All the cells were maintained at 37°C in a humidified incubator with 5% CO₂.

RNA extraction and quantitative real-time polymerase chain reaction (qRT-PCR)

Total RNA and microRNAs were extracted from tissues and cells using TRIzol reagent (Qiagen, Hilden, Germany) according to the manufacturer's protocol. Following quantification by NanoDrop 2000 (Thermo Fisher Scientific, Waltham, USA), the extracted total RNA was reverse-transcribed using Reverse Transcription Kit (Takara, Dalian, China). RT-PCR was performed on an Applied Biosystems 7500 Fast Real-Time PCR systems (Applied Biosystems). The specific primer sequences synthesized by Shanghai Sangon Biological Engineering Technology and Service were as followed: HOXD-AS1, forward 5’-GGCTCTTCCCTAATGTGTGG-3’ and reverse 5’-CAGTCCAGCATGAAACAGA-3’; FZD4, forward 5’-GGTGCTCCTCCCTTCTTTACTT-3’, reverse 5’-ATCACACCTTGTGAGAAC-3’; GAPDH, forward 5’-AAACTTTGTATCGTGGAAGG-3’, reverse 5’-GCATCACGCACAGTTTC-3’. The PCR conditions were as follows: denaturation at 95°C for 10 min, followed by 40 cycles of 95°C for 5 sec and 60°C for 40 sec. GAPDH was used as an endogenous control to normalize HOXD-AS1 and FZD4 expression levels. The relative expression level was calculated using the 2-ΔΔCt method. The experiments were performed in triplicate.

Cell transfection

Cell transfection was performed using Lipofectamine 2000 (Invitrogen, Waltham, USA) according to manufacturer’s instructions. Cells (5×10⁵ cells/well in six-well plates, 70%-80% confluency) were transfected with HOXD-AS1 mimics or si-HOXD-AS1. HOXD-AS1 mimics and small interfering RNA to knockdown HOXD-AS1 were synthesized by Shanghai GenePharma Co., Ltd. (Shanghai, China). Small interfering RNA sequences were listed as followed: si-HOXD-AS1 sense, 5’-GAAAGAAGGACCAAAGTAA-3’; si-HOXD-AS1 antisense, 5’-GCACAAAGGAACAGAAA-3’. Cells were harvested 48 h post-transfection for further experiments.

Cell viability assay

Cell proliferation was assessed using MTT Cell Proliferation and Cytotoxicity Assay Kit (Sigma-Aldrich, St. Louis, USA) according to the manufacturer’s instructions. In brief, cells were seeded in each well of a 96-well plate at a density of 1×10⁴ cells/well. Following incubation at 37°C for different periods of time (0, 24, 48 and 72 h), the culture medium was removed and MTT (20 μl; 5 mg/mL) was added to each well. After incubation at 37°C for another 4 hours, MTT solution was removed and replaced with dimethyl sulfoxide (DMSO; 150 μl, 4%; Sigma-Aldrich). Absorbance was measured at 560 nm by a microplate reader (Bio-Tek Instruments, Germany).

Colony formation assay

Colony formation assays were performed to evaluate the clonogenic ability of OC cells. Briefly, 400 cells from each treatment were
allowed to grow for two weeks on 6-well culture plates to form colonies. Crystal violet (2%) was used to stain colonies and the number of colonies was subsequently counted under an inverted microscope (Olympus, Japan). The experiments were performed in triplicate.

Wound healing assay

Cells were seeded in 6-well culture plates to grow into a monolayer (basically 100% confluence). The cell monolayer was scraped using pipette and washed twice with medium to form a wound. The cells were further cultured in the medium for 24 h and closure of scratch was observed using a inverted microscope (Olympus). Cells were observed at 0 and 24 h after scraping under an inverted microscope and corresponding photographs were taken. The cell-free area at 24 h after wounding and original denuded area were measured using the Image J software (National Institutes of Health, Bethesda, MD, USA).

Transwell invasion assay

Transwell invasion assay was performed to assess cell invasion. The upper surface of the filter (pore size, 8.0 μm; Biosciences, Heidelberg, Germany) was coated with basement membrane Matrigel (BD Bioscience), at a concentration of 2 mg/ml and incubated at 4°C for 3 h. 2×10^4 cells were seeded into upper chamber with 200 μl serum-free medium. The lower chamber was supplemented with 750 μl medium containing 10% FBS. Following incubation for 24 h at 37°C, cells were fixed with 4% polyoxymethylene and stained with 0.5% crystal violet (Sigma-Aldrich). Then stained cells were observed and counted under a microscope. Five visual fields were selected and the average number was taken.

Luciferase reporter assay

Wild-type HOXD-AS1, mutant HOXD-AS1 were inserted into pmirGLO reporter vectors (Promega, Madison, WI, USA), respectively. OVCAR-3 cells were co-transfected with miR-608 mimics and wild-type HOXD-AS1 or mutant HOXD-AS1 by Lipofectamine 2000 (Invitrogen). Relative luciferase activity was measured on a dual-luciferase reporter assay system (Promega) at 48 h post-transfection. Data were expressed as the ratio of Renilla luciferase activity to firefly luciferase activity. Luciferase reporter assays to validate the direct binding of miR-608 to FZD4 3'UTR were performed as described above.

RNA-binding protein immunoprecipitation (RIP)

RIP assays were performed using EZ-Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit (Millipore, Billerica, MA, USA) according to manufacturer’s protocol. Briefly, RIP buffer containing magnetic beads conjugated with human anti-Ago2 antibody (Millipore) or negative control IgG (Millipore) was added to cell lysate and incubated for overnight at 4°C. Proteinase K was used to digest the protein and then the co-precipitated RNAs were isolated. The purified RNAs were subject to RT-PCR analysis.

Western blot analysis

Protein lysates were extracted from cells using 500 μl radio immunoprecipitation assay (RIPA) buffer with 1 mM phenylmethane sulfonyl fluoride. Samples were subsequently sonicated for 2 min and centrifuged. The supernatants were collected and used for protein analysis. Lysates were separated on 8% polyacrylamide gels and transferred onto PVDF membrane. The membranes were blocked with phosphate-buffered saline (PBS) containing 0.1% Tween-20 (PBST) and 5% nonfat milk (w/v) for 1 h at room temperature. After they were washed with PBST, the membranes were probed with antibodies overnight at 4°C. Anti-FZD4 (ab83042) and anti-GAPDH (ab8245) were obtained from Abcam (Cambridge, MA, USA) and used at the following dilutions: anti-FZD4 (1:1000) and anti-GAPDH (1:3000). The membranes were washed again with PBST, then horseradish peroxidase (HRP) labeled IgG at 1:5000 dilution was added at room temperature for 1 h, and the blots were developed using ECL Western blotting reagents.

Statistical analysis

Data were expressed as mean ± standard deviation (SD). Statistical analysis was performed using SPSS 16.0 software (SPSS, Chicago, IL, USA). Kaplan-Meier survival and log-rank test were used for survival analysis and comparison of differences in overall survival. Correlation between HOXD-AS1 expression and miR-608 or FZD4 expression in OC tissues was determined using Pearson’s correlation analysis. Two-tailed student’s t-test was applied to compare the differences between two groups and
HOXD-AS1 promotes OC cell proliferation, migration and invasion by targeting miR-608

Results

HOXD-AS1 is significantly upregulated in OC tissues and cell lines

Even though HOXD-AS1 has been frequently reported to be involved in the oncogenesis and progression of diverse types of human cancers, its role in OC remains unclear. Initially, we performed qRT-PCR analysis to examine the expression of HOXD-AS1 in 16 pairs of OC tissues and matched adjacent noncancerous tissues. As evident from qRT-PCR analysis, OC tissues exhibited higher expression levels of HOXD-AS1 than paracancerous tissues (Figure 1A). To investigate the association between increased HOXD-AS1 expression and the prognosis of OC patients, we analyzed the information of 369 patients downloaded from TCGA online database. Patients with high HOXD-AS1 expression were discovered to experience lower overall survival rate compared with those with low HOXD-AS1 expression (Figure 1B). Consistently, HOXD-AS1 was significantly upregulated in OC cell lines (Caov-3, SK-OV-3 and OVCAR-3) compared with normal ovary cell line IOSE80 (Figure 1C). OVCAR-3 cells (highest endogenous HOXD-AS1 expression) were selected for subsequent experiments. The findings indicate that elevated expression of HOXD-AS1 may be associated with poor prognosis of OC patients. Taken together, HOXD-AS1 is markedly upregulated in OC tissues and cell lines.

HOXD-AS1 promotes OC cell proliferation and colony formation

To explore the potential role of HOXD-AS1 in OC, OVCAR-3 cells were transfected with HOXD-AS1 mimics or siRNA-HOXD-AS1. The transfection efficiency was identified using qRT-PCR (Figure 2A). As presented in Figure 2B, OVCAR-3 cell proliferation was dramatically accelerated by HOXD-AS1 mimics compared with negative control group, whereas HOXD-AS1 knockdown markedly suppressed OVCAR-3 cell proliferation. As evident from colony formation assay, HOXD-AS1 overexpression markedly enhanced clonogenic ability of OVCAR-3 cells; in addition, clonogenic capability of OVCAR-3 cells was notably repressed by HOXD-AS1 downregulation (Figure 2C). These results indicate that HOXD-AS1 promotes OC cell proliferation and colony formation.

HOXD-AS1 accelerates OC cell migration and invasion

To determine whether HOXD-AS1 influences the mobility of OC cells, we evaluated the migration and invasion capabilities of OVCAR-3 cells after transfection with HOXD-AS1 mimics or si-HOXD-AS1. As obvious from wound healing
HOXD-AS1 promotes OC cell proliferation, migration and invasion by targeting miR-608

Figure 2. HOXD-AS1 promotes OC cell proliferation and colony formation. A. HOXD-AS1 expression levels were identified using qRT-PCR after transfection with HOXD-AS1 mimics or si-HOXD-AS1. B. Cell proliferation was identified using MTT assay after transfection with HOXD-AS1 mimics or si-HOXD-AS1. C. Clonogenic ability was assessed by colony formation assays after transfection with HOXD-AS1 mimics or si-HOXD-AS1. **P<0.01. HOXD-AS1, HOXD homeobox gene cluster antisense RNA 1; OC, ovarian cancer; siRNA, small interfering RNA; NC, negative control.

Assays, HOXD-AS1 overexpression markedly enhanced the migration ability of OVCAR-3 cells compared with negative control group, whereas migration capability of OVCAR-3 cells was dra-
HOXD-AS1 promotes OC cell proliferation, migration and invasion by targeting miR-608

matically inhibited by HOXD-AS1 knockdown (Figure 3A). Transwell invasion assays demonstrated that OVCAR-3 cell invasion was remarkably promoted by HOXD-AS1 mimics compared with negative control group, besides, HOXD-AS1 downregulation significantly repressed OVCAR-3 cell migration (Figure 3B). Our findings indicate that HOXD-AS1 accelerates OC cell migration and invasion.

HOXD-AS1 interacts with miR-608 in OC cells

Mounting studies have showed that Inc RNAs may be involved in the pathogenesis and devel-
HOXD-AS1 promotes OC cell proliferation, migration and invasion by targeting miR-608.

Recent studies have demonstrated that IncRNAs may serve as competing endogenous RNAs (ceRNAs) through competitively binding to shared miRNAs. As presented in Figure 5A, HOXD-AS1 mimics significantly downregulated miR-608 expression in OVCAR-3 cells compared with negative control group, whereas knock-down of HOXD-AS1 upregulated miR-608 expression in OVCAR-3 cells. To further elucidate the molecular mechanism by which HOXD-AS1 exerts its promotive effects on OC proliferation, migration and invasion, the potential targets of miR-608 were predicted using miRanda online software. Among the predicted targets, FZD4 arose our interest for its importance in carcinogenesis and progression of a wide range of human tumors, and was selected as a candidate target of miR-608 (Figure 5B). Luciferase reporter assays were performed to validate the direct binding of miR-608 to FZD4 3’UTR. As illustrated in Figure 5C, co-transfection of miR-608 and wild-type FZD4 3’UTR significantly repressed the activity of luciferase in comparison with negative control group, whereas co-transfection of miR-608 and mutant FZD4 3’UTR failed to suppress luciferase activity. RT-PCR analysis and Western blotting analysis revealed that FZD4 was dramatically downregulated by miR-608 mimics (Figure 5D and 5E).
HOXD-AS1 promotes OC cell proliferation, migration and invasion by targeting miR-608

A

B

wt-FZD4 5'...GGGUCCUCAUGCCACCCCC
hsa miR-608 3' GACAGGGUUGUUGGGGGA
mut-FZD4 5'...UCUUGGGUCCUCAUGGGGGG

C

D

E

F

G

H

R²=0.7181
p<0.0001

R²=0.8687
p<0.0001

Am J Cancer Res 2018;8(1):170-182
These data indicate that miR-608 directly binds to 3’UTR of FZD4 to suppress its expression.

To investigate whether HOXD-AS1 modulates the expression of FZD4, we transfected OVCAR-3 cells with HOXD-AS1 mimics or si-HOXD-AS1. As obvious from qRT-PCR analysis, FZD4 was markedly upregulated by HOXD-AS1 mimics compared with negative control group, whereas FZD4 was notably downregulated by knockdown of HOXD-AS1 (Figure 5F). Additionally, Pearson’s correlation analysis showed that HOXD-AS1 expression was inversely correlated with miR-608 expression in OC tissues. On the contrary, HOXD-AS1 expression was positively correlated with FZD4 mRNA expression in OC tissues (Figure 5G and 5H). Our findings suggest that HOXD-AS1 positively modulates the expression of FZD4 by sponging miR-608.

Figure 5. HOXD-AS1 upregulates FZD4 expression by competitively binding to miR-608 in OC cells. A. MiR-608 expression was detected by qRT-PCR after transfection with mimics-NC or HOXD-AS1 mimics. B. A putative binding site of miR-608 in FZD4 was predicted by miRanda online software. C. Luciferase activity was measured after co-transfection with miR-608 and wt-FZD4 3’UTR fragment or mut-FZD4 3’UTR fragment. D. FZD4 mRNA expression was measured by qRT-PCR after transfection with miR-608 mimics. E. FZD4 protein expression was identified using western blots. F. FZD4 mRNA expression was assessed by qRT-PCR after transfection with HOXD-AS1 mimics or si-HOXD-AS1. G. Correlation between HOXD-AS1 expression and miR-608 expression in OC tissues was determined by Pearson’s correlation analysis. H. Correlation between HOXD-AS1 expression and FZD4 mRNA expression in OC tissues was determined by Pearson’s correlation analysis. **P<0.01. HOXD-AS1, HOXD homeobox gene cluster antisense RNA 1; OC, ovarian cancer; FZD4, frizzled family receptor 4; wt, wild-type; mut, mutant.

miR-608 mediates the effects of HOXD-AS1 on OC cell proliferation, migration and invasion

To investigate whether the promotive effects of HOXD-AS1 on OC cell proliferation, migration and invasion are mediated by miR-608, we rescued the expression of miR-608 in OVCAR-3 cells. Restoring the expression of miR-608 was noticed to partially reverse the promotive effects of HOXD-AS1 on OC cell proliferation, colony formation, migration and invasion (Figure 6A-D). Furthermore, qRT-PCR and Western blotting analyses demonstrated that rescuing the expression of miR-608 dramatically down-regulated the expression of FZD4 in OVCAR-3 cells (Figure 6E and 6F). Our data indicate that the promotive effects of HOXD-AS1 on OC cell proliferation, migration and invasion are mediated by miR-608.

Discussion

OC, a lethal malignancy of the female reproductive system, has brought high health risks and tremendous economic pressures to the woman around the world [3, 5]. Even though conventional therapeutic strategies, such as surgery, radiotherapy and chemical therapy, have slightly improved the overall survival of OC patients, the long-term prognosis remains poor. Mounting evidence has demonstrated that IncRNAs are dysregulated in a wide range of human cancers and involved in the oncogenesis and progression [11-14]. Previous studies have revealed that aberrant expression of HOXD-AS1 is implicated in multiple types of human tumors. Wang et al discovered that HOXD-AS1 was significantly upregulated and in hepatocellular carcinoma tissues and plays a pro-metastasis role in liver cancer metastasis by regulating SOX4 [19]. Li et al demonstrated that HOXD-AS1 acted as an oncogene in the progression of bladder cancer [20]. HOXD-AS1 was found to function as an oncogene to facilitate non-small cell lung cancer progression by sequestering miR-147 [24]. Besides, HOXD-AS1 has been reported to be involved in the occurrence and development of gastric cancer, prostate cancer and neuroblastoma [21-23]. However, little is known about the role of HOXD-AS1 in OC. Thus, a better understanding of the biological functions of HOXD-AS1 may be useful for developing promising therapeutic strategies and identifying novel prognostic biomarkers.

In the current study, we initially examined the expression of HOXD-AS1 in 16 pairs of OC tissues and matched adjacent normal tissues and found that HOXD-AS1 was markedly upregulated in OC tissues. Furthermore, we downloaded the information of 369 OC patients from TCGA online database in order to investigate the association between HOXD-AS1 expression and the prognosis of OC patients. Kaplan-Meier survival analysis revealed that patients with high HOXD-AS1 expression experienced lower overall survival rate. Consistently, HOXD-AS1 was notably upregulated in OC cell lines. To better understand the role of HOXD-AS1 in OC, func-
Figure 6. miR-608 mediates the effects of HOXD-AS1 on OC cell proliferation, migration and invasion. A. Cell proliferation was assessed by MTT assays after rescuing the expression of miR-608. B. Clonogenic ability was identified by colony formation assays after rescuing the expression of miR-608. C. Cell migration was measured by wound healing assays. D. Cell invasion was evaluated by transwell invasion assay after rescuing the expression of miR-608. E. FZD4 mRNA expression was examined using qRT-PCR after rescuing the expression of miR-608. F. FZD4 protein expression was analyzed by western blots after rescuing the expression of miR-608. **P<0.01 vs NC mimics+Con group, ##P<0.01 vs HOXD-AS1 mimics+miR-608. HOXD-AS1, HOXD homeobox gene cluster antisense RNA 1; OC, ovarian cancer; NC, negative control.
HOXD-AS1 promotes OC cell proliferation, migration and invasion by targeting miR-608

Additional studies were conducted. Our data demonstrated that HOXD-AS1 overexpression facilitated OC cell proliferation, enhanced the clonogenic ability of OC cells, and accelerated OC cell migration and invasion. Our findings reveal that HOXD-AS1 may function as an oncogene in OC.

Evidence is accumulating that IncRNAs are involved in carcinogenesis and progression as competing endogenous RNAs (ceRNAs) by sponging miRNAs [25, 26]. Previous studies have demonstrated that miR-608 served as a tumor suppressor in various types of human tumors, including colon cancer, colorectal cancer, glioma and bladder cancer [27-30]. FZD4, a member of frizzled (FZD) receptor family, has been reported to function as the membrane receptor for Wnt signaling glycoproteins and implicated in the progression of human tumors [31-34]. To explore the underlying molecular mechanisms by which HOXD-AS1 exerts an oncogenic role in OC, bioinformatics analysis and luciferase reporter assays revealed that HOXD-AS1 could competitively bind to miR-608 in OVCAR-3 cells. In addition, FZD4 was identified as a direct of miR-608 in OVCAR-3 cells. Moreover, HOXD-AS1 was observed to upregulate the expression of FZD4 by competitively sponging miR-608 in OVCAR-3 cells. It was noted that HOXD-AS1 expression was negatively correlated to miR-608 expression, but positively correlated to FZD4 mRNA expression in OC tissues.

To further elucidate the mechanisms underlying OC oncogenesis and progression, we rescued the miR-608 in the OVCAR-3 cells. Rescuing the expression of miR-608 was found to partially inverse the promotive effects of HOXD-AS1 on OC cell proliferation, colony formation, migration and invasion. Besides, rescuing the expression was noticed to down-regulate the expression of FZD4. These results demonstrated that indicate that the promotive effects of HOXD-AS1 on OC cell proliferation, colony formation, cell migration and invasion were mediated partially by miR-608/FZD4 axis.

In conclusion, HOXD-AS is significantly upregulated in OC tissues and cell lines, and exerts oncogenic roles in OC partially through miR-608/FZD4 axis. Our study provides new insights into the potential molecular mechanisms underlying OC carcinogenesis and progression. Thus, HOXD-AS1 may be used as a promising therapeutic target and a novel prognostic biomarker for OC.

Disclosure of conflict of interest
None.

Address correspondence to: Shanfeng Wang, Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinzhou Medical University, No. 2 Section 5 Renmin Street, Jinzhou 121000, China. E-mail: sfwang1020@163.com

References
[10] Li H, Yu B, Li J, Su L, Yan M, Zhu Z and Liu B. Overexpression of IncRNA H19 enhances car-
HOXD-AS1 promotes OC cell proliferation, migration and invasion by targeting miR-608

Am J Cancer Res 2018;8(1):170-182
HOXD-AS1 promotes OC cell proliferation, migration and invasion by targeting miR-608

