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MMP-3 at 57, 53 and 45/46 kDa, respectively, 
immunoprecipitated with both hepsin and 
TMPRSS2 (Figure 6A). In addition, while we co- 
nsistently observed that zymogen, intermedi-
ate and active MMP-9 at 92, 86 and 82 kDa, 
respectively, immunoprecipitated with hepsin, 
only the zymogen and intermediate forms of 
MMP-9 consistently co-purified with TMPRSS2 
(Figure 6B). Figure 6C and 6D indicated that 
zymogen and activated hepsin and TMPRSS2 
immunopurifiy using the anti-MMP-3 and -MMP-
9 antibodies.

action of hepsin, was also isolated from the cell 
surface fraction (Figure 7A). Similarly, zymogen 
and active TMPRSS2 and zymogen KLK14 were 
also present in biotinylated fractions although 
we consistently only obtained small quantities 
of the TMPRSS2 SPD (Figure 7B). Note that 
purified fractions were free of GAPDH indicating 
that cells were intact during biotinylation and 
that cell surface proteins were not contaminat-
ed with cytoplasmic fractions (Figure 7). These 
data support the proposal that secreted prote-
ases can associate with the cell surface.

Figure 7. Hepsin, TMPRSS2, KLK4 and KLK14 localize to the cell surface. 
A. Western blot analysis of cell surface biotinylated fractions from COS-7 
cells transiently transfected with KLK4-V5 and hepsin-Flag. Asterisk, 17 kDa 
KLK4 cleavage products. B. Western blot analysis of cell surface biotinyl-
ated fractions from COS-7 cells transiently transfected with KLK14-HA and 
TMPRSS2-Myc. Purified fractions were free of GAPDH indicating that cells 
were intact during biotinylation. C. Confocal microscopy analysis of COS-7 
cells co-expressing hepsin-Flag or TMPRSS2-Myc (purple) with KLK4-V5 or 
KLK14-HA (green). Cells were co-stained with DAPI to delineate cell nuclei 
(blue), and Alexa Fluor 568 conjugated phalloidin to delineate F-actin posi-
tive cytoplasm (red). White, regions of co-localisation of hepsin/TMPRSS2 
(purple) with KLK4/KLK14 (green). Scale bar = 10 µm.

Hepsin and TMPRSS2 co-
localize with KLK4 and KLK14 
on the cell surface

The above data indicate that 
the secreted proteases KLK4, 
KLK14, MMP-3 and MMP-9 
can associate with and are 
cleaved by the membrane-
anchored proteases hepsin 
and TMPRSS2 the cell sur-
face. To directly assess the 
plasma membrane location of 
these proteins we performed 
Western blot analysis of cell 
surface biotinylated proteins, 
and confocal microscopy an- 
alysis.

As MMP-3 and MMP-9 have 
previously been shown to bind 
to the cell surface [47], we 
focused on the plasma mem-
brane location of KLK4 and 
KLK14, in the presence and 
absence of hepsin and TM- 
PRSS2, respectively. This was 
performed by cell surface bio-
tinylation of live COS-7 cells 
transiently transfected with 
KLK4-V5 and hepsin-Flag, or 
KLK14-HA and TMPRSS2-
Myc. As shown in Figure 7A, 
Western blot analysis of bioti-
nylated proteins purified using 
streptavidin beads, revealed 
that zymogen and active hep-
sin, and zymogen KLK4 are 
located on the cell surface. In 
addition, a 17 kDa KLK4 frag-
ment, generated through the 
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To further explore the cell surface localization 
of membrane-anchored hepsin and TMPRSS2 
and secreted KLK4 and KLK14, we performed 
confocal microscopy analysis of transiently ex- 
pressing COS-7 cells. Fixed and permeabilized 

including pre-malignant regions of benign pros-
tate and high grade prostatic intraepithelial 
neoplasia (HG-PIN), as well as prostatic acinar 
adenocarcinoma, and the less common but 
aggressive, prostatic ductal adenocarcinoma 

Figure 8. Over-lapping expression of hepsin, TMPRSS2, KLK4, KLK14, MMP-
3 and MMP-9 in benign and malignant prostate. Consecutive sections of 
a prostate tumor were stained with antibodies against hepsin, TMPRSS2, 
KLK4, KLK14, MMP-3 and MMP-9. Representative regions showing staining 
in prostatic ductal adenocarcinoma, prostatic acinar adenocarcinoma with 
adjacent benign prostate, and PIN were photographed. BGN, benign. All im-
ages were acquired using a 40× objective unless otherwise indicated.

cells were stained with anti-
bodies against the epitope tag 
present on each protease, and 
with dyes that delineate cell 
cytoplasm and nuclei. As sh- 
own in Figure 8C, the predomi-
nant signal for each protease 
pair was a white signal pres-
ent in the cytoplasm of cells 
indicating co-localisation of 
the proteases during cellular 
trafficking. Of particular note, 
as highlighted in the insets in 
Figure 8C, we also commonly 
observed distinct co-localiza-
tion as a white signal of prote-
ase pairs on the surface of cel-
lular protrusions. These data 
support that TTSPs and KLKs 
co-localize on the cell surface 
within defined structures, to 
facilitate reciprocal cleavage 
events that are necessary for 
the tight regulation of prote-
ase activation and inactiva-
tion at sites of interactions 
with the extracellular milieu.

Over-lapping expression of 
hepsin, TMPRSS2, KLK4, 
KLK14, MMP-3 and MMP-
9 in benign and malignant 
prostate

The proteases hepsin [16, 48, 
49], TMPRSS2 [18], KLK4 [21, 
50], KLK14 [25], MMP-3 [27] 
and MMP-9 [28] are expressed 
to various extents in normal 
and diseased prostate. To 
explore the extent of the co-
expression of these proteases 
we next performed immuno-
histochemical analysis. For 
this purpose we selected a 
prostate cancer patient sam-
ple that contained regions of 
pathology commonly encoun-
tered in the clinical manage-
ment of prostate disease, 
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[51]. Most interestingly, from analysis of con-
secutive sections, we noted that highest ex- 
pression for each protease was observed in 
prostatic ductal adenocarcinoma (Figure 8; left 
panels). These lesions, while rarer than pros-
tatic acinar adenocarcinoma, follow a more 
aggressive course, are associated with poor 
prognosis and have a greater propensity to 
spread to the testis and penis [52]. In these 
regions of the tumor, staining for hepsin was 
predominantly membranous, consistent with 
its membrane spanning structure, and altho- 
ugh TMPRSS2 also has a membrane spanning 
domain, its expression was predominantly cy- 
toplasmic with some evidence of membrane 
accentuation in places. Both KLK4 and KLK14 
were most obvious as cytoplasmically located 
punctate structures, while MMP-3 and MMP-9 
were located diffusely throughout the cyto-
plasm with MMP-9 showing cytoplasmic regi- 
ons of fine granular expression (Figure 8; left 
panels).

Both hepsin and TMPRSS2 showed predomi-
nantly membranous expression in prostatic  
acinar adenocarcinoma, and it was striking that 
in these lesions the punctate expression of 
KLK4 and KLK14 seen in regions of prosta- 
tic ductal adenocarcinoma was not apparent 
(Figure 8; middle panels). Interestingly, in addi-
tion to cytoplasmic staining, both MMP-3 and 
MMP-9 showed evidence of membrane expres-
sion in prostatic acinar adenocarcinoma (Figure 
8; middle panels). In benign hypertrophic pros-
tate, hepsin was strongly expressed, while in 
these glands TMPRSS2 was most predominant 
in basal cells. KLK4 and MMP-3 expression 
was weak and KLK14 absent in benign pros-
tate. In contrast, MMP-9 levels in benign glands 
were similar to those seen in prostatic acinar 
adenocarcinoma (Figure 8; BNG, middle pan-
els). Each protease was expressed in regions of 
HG-PIN with staining generally more intense 
than in benign regions but weaker than in areas 
of prostatic ductal adenocarcinoma (Figure 8C; 
right panels). 

In summary, there is considerable overlap in 
the expression patterns of hepsin, TMPRSS2, 
KLK4, KLK14, MMP-3 and MMP-9, in the 
pathologies commonly seen in prostate tumors, 
supporting the possibility that these proteases 
could interact in vivo during progression of 
prostate cancer, as we have seen from cells in 
vitro.

Discussion

The data presented here provide evidence of a 
novel pericellular proteolytic regulatory network 
of the prostate cancer expressed proteases 
hepsin, TMPRSS2, KLK4, KLK14, MMP-3 and 
MMP-9. In summary, as shown in Figure 9, con-
sistent with the ability to function as cell sur-
face initiators of proteolytic networks, we dem-
onstrated that plasma membrane localized 
hepsin is able to autoactivate, and autoac- 
tivation has previously been reported for  
the structurally related TMPRSS2 [38]. While 
remaining tethered to the cell surface hepsin 
and TMPRSS2 proteolyze, to various extents, 
secreted KLK4, KLK14, MMP-3 and MMP-9. 
Our data indicate that active hepsin mediates 
degradation of KLK4 resulting in cell associa-
tion of a 17 kDa KLK4 degradation product of 
unknown function. In contrast, active TMPRSS2 
mediates limited proteolysis of KLK4, likely 
generating a precursor that requires further 
proteolysis at its consensus activation site 
Gln30 to achieve catalytic activity (Figure 9). 
Important for the full activation of KLK4 is our 
observation that both hepsin and TMPRSS2 
mediate activation of MMP-3, the only known 
activator of KLK4 via proteolysis at Gln30 [13, 
37, 40]. Interestingly, active KLK4 itself likely 
regulates TMPRSS2 activity because it medi-
ates cleavage of this TTSP between its serine 
protease and transmembrane domains. While 
this does not release TMPRSS2 proteolysis 
from the cell surface it will likely disrupt its 
LDLRA or scavenger receptor regulatory do- 
mains. Hepsin undergoes analogous proteoly-
sis within the region between its serine prote-
ase and transmembrane domains via an au- 
toproteolytic mechanism (Figure 9). As shown 
in Figure 9B, in contrast with its degradation of 
KLK4, hepsin generates the KLK14 SPD which 
remains plasma membrane associated. Similar 
to hepsin mediated degradation of KLK4, TM- 
PRSS2 appears to degrade KLK14, resulting in 
reduced pro-KLK14 in conditioned media.

While further work is required to validate these 
results in cells that endogenously express 
these proteases, two key findings from our 
study suggest that the identified novel proteo-
lytic interactions at the cell surface, may be 
important in prostate cancer patients. In par-
ticular, we propose that the network will have 
most importance as the disease progresses 
during which cells de-differentiate and normal 
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glandular structure is gradually lost. First, our 
immunohistochemical analysis indicates that 
in vivo each protease is expressed during pro-
gression from benign to malignant prostate. To 
ensure that we could assess the co-expression 
of the six proteases in as broad a range as pos-
sible of prostate pathologies, we selected a 
patient sample for this analysis that contained 
pre-malignant regions of benign prostate and 
high grade prostatic intraepithelial neoplasia 
(HG-PIN), as well as prostatic acinar adenocar-
cinoma and prostatic ductal adenocarcinoma. 
Highest co-expression was observed in pros-
tatic ductal adenocarcinoma, a less common 
histological variant than prostatic acinar ade-
nocarcinoma, that follows a more aggressive 
course, and is associated with poor prognosis 
with greater propensity to spread to sites other 
than bone including the testis and penis [52]. 
Significantly, hepsin displayed predominant cell 

sion and survival, that require processing of 
growth factors and cytokines, activation of 
receptors, and suppression of immune respons-
es [53]. Coupled with a previous report demon-
strating that MMP-3 and MMP-9 also associate 
with the cell surface [47], these data suggest 
the possibility that the novel proteolytic net-
work identified by us, will be most important 
during active dissemination of prostate and 
potentially other cancers.

This is the first report of cell surface associa-
tion of the secreted proteases KLK4 and 
KLK14. While mechanisms regulating these 
associations have not been defined, cell sur-
face binding of other protease have been 
defined. These include MMPs where binding 
occurs via several mechanisms that generally 
involve the protease hemopexin domain includ-
ing MMP3 binding via cell surface localized col-

Figure 9. Summary of interactions between membrane anchored hepsin 
and TMPRSS2, with secreted KLK4, KLK14, MMP-3 and MMP-9. Details are 
described in the text. A. Proteolytic interactions centred on KLK4. B. Proteo-
lytic interactions centred on KLK14.

surface expression through-
out all of the regions of the 
analyzed prostate tumor, while 
TMPRSS2 was also plasma 
membrane localized particu-
larly in prostatic acinar adeno-
carcinoma, the most common 
histotype for this cancer. Also 
consistent with our in vitro 
data, the secreted proteases 
MMP-3 and MMP-9 also sh- 
owed evidence of membrane 
expression in this histotype. 

The second key finding points 
to the importance of the tim-
ing of activation of compo-
nents of the proteolytic net-
work. Our confocal microscopy 
analysis demonstrates that 
hepsin and TMPRSS2 colo- 
calize on the cell surface with 
the secreted serine protea- 
ses KLK4 and KLK14, only in 
membrane protrusions. This 
suggests that the reciprocal 
proteolytic interactions identi-
fied by us from Western blot 
analysis of cell lysates, immu-
noprecipitates and cell sur-
face fractions, occur in defin- 
ed cellular protrusions. These 
structures are particularly im- 
portant during cancer dissem-
ination for cell migration, inva-
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lagen I [47], and MMP9 binding via integrins 
[54-56] and CD44 [57, 58]. Cell surface local-
ization of other secreted serine proteases 
involves binding to plasma membrane recep-
tors and other membrane linked proteins with 
examples including factor VIIa and Xa docking 
to tissue factor to regulate blood coagulation 
[59, 60], uPA binding to its receptor uPAR to 
regulate tissue remodelling [61], and plasma 
kallikrein binding via high-molecular weight 
kininogen which itself binds via negative charg-
es on the cell surface, to regulate blood pres-
sure and inflammation [62]. However, it is im- 
portant to note that for each of the proteases in 
these systems, interactions with cell surface 
proteins is via a non-proteolytic domain. As 
KLK4 and KLK14 lack non-proteolytic domains 
it is not clear how plasma membrane associa-
tion of these proteases occurs, although recent 
work by Rolland and colleagues [63] revealed 
the cell surface protein TYRO3 protein tyrosine 
kinase as a potential binding partner for KLK4. 
To date it is the only KLK family member to have 
been associated with a transmembrane/cell-
surface binding partner. However, the mecha-
nism regulating interaction between KLK4 and 
TYRO3 has yet to be determined.

In conclusion, it is important to note that in 
addition to regulating each other, the proteases 
examined by us also regulate a range of key sig-
nalling systems at the cell surface that promote 
prostate cancer and other malignancies includ-
ing serine protease regulation of protease acti-
vated receptors [19, 24], and the HGF/Met and 
MSP/RON receptor systems. Thus, a better 
understanding of the mechanisms that regu-
late the pericellular proteolytic network of  
hepsin, TMPRSS2, KLK4, KLK14, MMP-3 and 
MMP-9, may identify novel approaches to dis-
rupt processes important in cancer progres- 
sion.
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