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Figure 5. miR-141 inhibits proliferation and induces G1-phase arrest of A549 cells by suppressing the expression of HOXC13. A. miR-141 downregulated the expres-
sion of HOXC13, CCND1, and CCNE1, while oe-HOXC13 reversed these effects. B and C. Compared with pcDNA, oe-HOXC13 partially reversed the miR-141-mediated 
inhibition of A549 cell proliferation (p<0.0001). D. Overexpression of HOXC13 (oe-HOXC13) partially reversed the miR-141-mediated G1-phase arrest (p<0.0001).
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Figure 6. Mechanism of miR-141-targeted HOXC13 
promoting proliferation and cell cycle progression via 
modulation of CCND1 and CCNE1 expression.

A well-balanced cell cycle progression is neces-
sary for cell proliferation, while dysregulation of 
the cell cycle components may lead to tumor 
formation [44]. In our study, we confirmed that 
HOXC13 was inextricably linked to lung adeno-
carcinoma cell cycle G1/S transition. Cyclins, 
as fundamental regulators of the cell cycle, play 
an important role in tumorigenesis [45]. Cyclin 
D1, encoded by CCND1, is a well-documented 
regulator of the G1/S transition through the 
activation of CDK4/6 kinase and subsequent 
phosphorylation of Rb [46]. Additionally, the 
interaction between cyclin E1 and CDK2 plays 
an essential role in the G1/S phase transition 
via phosphorylation of p27 [47]. 

CCND1 and CCNE1 are well-recognized onco-
genes, as well as poor prognostic indicators in 
lung cancer [48-50]. These studies suggest 
that CCND1 and CCNE1 and/or their upstream 
regulators can affect proliferation of tumor 
cells. Further verification of the influence of 
HOXC13 on cell cycle showed that CCND1 and 
CCNE1 were significantly downregulated after 
knockdown of HOXC13. The rescue experiment 
demonstrated that overexpression of CCND1 or 
of CCNE1 could partially reverse the inhibition 
of cell proliferation and G1-phase arrest caused 
by downregulation of HOXC13. We thus con-

clude that HOXC13 can regulate cell prolifera-
tion by influencing the expression of CCND1 
and CCNE1, during G1 phase.

MicroRNAs regulate post-transcriptional gene 
expression by base pairing with complementa-
ry sequences in the 3’-UTRs of target mRNAs, 
and subsequently inducing mRNA degradation 
or translational repression [51]. In general, one 
miRNA appears to be able to regulate several 
hundreds of genes; thus, miRNAs are involved 
in a variety of physiological and pathological 
processes, including the occurrence and devel-
opment of tumors [52, 53]. Identification of a 
particular miRNA that regulates HOXC13 may 
lead to promising therapeutic targets and prog-
nostic biomarkers in lung adenocarcinoma 
diagnosis and treatment. The present study 
confirmed that miR-141 directly targets the 
3’UTR of HOXC13, downregulating the expres-
sion of HOXC13, CCND1, and CCNE1, while 
overexpression of HOXC13 partially rescues 
the effect of miR-141 on proliferation and cell 
cycle. These data indicated that a miR-141-
HOXC13-CCND1/CCNE1 axis participates in 
the regulation of lung adenocarcinoma pro- 
liferation.

In conclusion, our study showed that HOXC13 
expression was significantly elevated in lung 
adenocarcinoma, and correlated with worse 
clinical characteristics and poorer prognosis. 
HOXC13 promoted proliferation and cell cycle 
progression via upregulation of CCND1 and 
CCNE1. Moreover, miR-141 was able to inhibit 
lung adenocarcinoma cell proliferation by sup-
pressing the expression of HOXC13, CCND1, 
and CCNE1 (Figure 6).
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