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Figure 5. Antitumor effects of hispidulin (20 µM) were abrogated by the ectopic expression of Sphk1 or pretreatment 
with K6PC-5, an activator of Sphk1. A: Western blotting validated the overexpression of Sphk1. B-G: Effects of his-
pidulin (20 µM) on the cell growth, cell apoptosis, expression of cleaved caspase-3 and cleaved PARP, cell migration, 
cell invasion, and expression of EMT markers in Caki-2 and A498 cells after overexpressing Sphk1 or pretreatment 
with Sphk1 activator K6PC-5. *p < 0.05, **p < 0.01.
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ated by ectopic overexpression of Sphk1 (Fig- 
ure 5C and 5D). The findings also revealed that 
pretreatment with K6PC-5, an Sphk1 activator, 
significantly reversed the antiproliferative and 
proapoptotic effects of hispidulin (Figure 5B-D). 
Furthermore, the inhibitory effect of hispidulin 
on the metastatic potential of Caki-2 and A498 
cells was significantly abolished by the ectopic 
overexpression of Sphk1 or K6PC-5 (Figure 
5E-G). Taken together, the findings highlighted 

that inhibition of Sphk1 activity mediated the 
anticancer activity of hispidulin against RCC.

Hispidulin suppressed tumor growth and lung 
metastasis of RCC in vivo

Based on the encouraging results from the in 
vitro studies, the therapeutic effect in vivo of 
hispidulin was evaluated using a mouse model. 
Hispidulin at both 20 and 40 mg/kg doses was 

Figure 6. Anti-neoplastic activity of hispidulin (40 mg/kg) in vivo. A: Hispidulin suppressed tumor growth in the A498 
xenograft model. B: Measuring the activity of Sphk1 after hispidulin treatment. C: TUNEL and immunohistochemi-
cal assay performed on cryostat sections were used to detect the cell apoptosis. D: Effect of hispidulin on the lung 
metastasis ability by counting the number of metastatic nodules in the lung. *p < 0.05, **p < 0.01.
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able to significantly suppress tumor growth (p < 
0.01 vs control; Figure 6A). Corresponding to 
the observation in tumor growth, the TUNEL 
and immunohistochemical assays showed that 
hispidulin treatment was associated with a 
dose-dependent increase in apoptosis and an 
increase in the expression of cleaved cas-
pase-3, respectively (Figure 6C). Moreover, the 
results showed that tumor growth inhibition by 
hispidulin correlated with a decreased activity 
of Sphk1 in tumor tissue (Figure 6B), support-
ing the in vitro findings that hispidulin mediated 
apoptosis in RCC by inhibiting Sphk1 and con-
sequently modulating ceramide-S1P balance. 
The effect of hispidulin on lung metastasis was 
also examined. Hispidulin treatment signifi-
cantly decreased the number of metastatic 
nodules in the lung (Figure 6D). Taken together, 
the in vivo studies indicated that hispidulin was 
able to effectively suppress tumor growth and 
metastasis in RCC.

Discussion

Epidemiological evidence showed that consu- 
mption of flavonoids was associated with a 
reduced risk of kidney cancers [10]. The role of 
hispidulin, one of the flavonoid compounds, as 
a chemopreventive agent was first reported in 
1992 [26]. In 2010, Way et al. revealed that his-
pidulin could induce apoptosis in ovarian can-
cer and glioblastoma multiforme cells through 
activating AMP-activated protein kinase signal-
ing [13, 14]. The proapoptotic effect of hispidu-
lin has also been evidenced in gastric cancer 
cells, pancreatic cancer cells, and hepatoma 
cells by different groups [16, 27, 28]. Moreover, 
previous studies also showed that hispidulin 
suppressed cell growth and induced apoptosis 
in hepatocellular carcinoma cells, gallbladder 
cancer cells, and leukemia cells [17, 18, 29]. 
Besides apoptosis, a previous study also 
showed that hispidulin suppressed hypoxia-
induced EMT of colorectal cancer [30]. This 
study aimed to evaluate the role of hispidulin in 
RCC and elucidate the underlying molecular 
mechanisms. The findings suggested that his-
pidulin inhibited Sphk1 activity and modulated 
ceramide-S1P rheostat, leading to suppression 
of tumor growth and metastasis in RCC.

Besides major constituents of cell membranes, 
sphingolipids, such as ceramides and S1P, 
have been found to have multiple biological 
functions in cancerous cells, leading to the 

introduction of the concept “ceramide-S1P 
rheostat”. The balance of ceramide-S1P rheo-
stat has been proposed to influence the cell 
function of cancerous cells [23]. A number of 
studies have evidenced that increasing the 
ceramide/S1P ratio could induce apoptosis in 
cancer cells, for instance, the increase in cellu-
lar ceramide and decrease in S1P by resvera-
trol in human leukemia cell line through tran-
scriptional upregulation of acid sphingomyelin-
ase, a key enzyme involved in ceramide genera-
tion [31]. Besides apoptosis, Osawa et al. also 
reported that ceramide-S1P rheostat was impli-
cated in liver metastasis of colon cancer [32]. 
In line with these previous studies, the results 
of the present study also showed that the anti-
growth and anti-metastatic effects of hispidulin 
were associated with increased ceramide/S1P 
ratio, further supporting that ceramide-S1P 
rheostat could be considered as a promising 
target for cancer therapy. 

Sphk1 is an oncogenic sphingolipid-metaboliz-
ing enzyme that catalyzes the formation of the 
mitogenic second messenger S1P, while con-
suming proapoptotic ceramide. Therefore, 
Sphk1 plays a key role in modulating ceramide-
S1P rheostat [33]. In fact, the aberrant overex-
pression of Sphk1 has been found in a variety 
of human cancers, and the association between 
the expression of Sphk1 and prognosis has 
been established [34]. Mechanistically, Sphk1 
is involved in cell oncogenesis, survival, metas-
tasis, and neovascularization of the tumor 
microenvironment [35]. In terms of RCC, inhibi-
tion of Sphk1 has been found to enhance che-
mosensitivity, suppressing invasion and angio-
genesis in RCC [36, 37]. Moreover, a previous 
study showed that Sphk1 activation contribut-
ed to acquired resistance against Sunitinib in 
RCC cells [21]. The present study findings indi-
cated that hispidulin exerted an anticancer 
effect by inhibiting the activity of Sphk1, high-
lighting the potential of hispidulin to overcome 
the resistance to Sunitinib in RCC, which 
remains to be further investigated.

Sphk1 is an enzyme with intrinsic catalytic 
activity, and phosphorylation of Sphk1 at Ser-
225 by extracellular signal-regulated kinase 
(1/2) dramatically increases its activity [24]. 
This phosphorylation not only increases the 
activity of Sphk1 but also promotes the translo-
cation of Sphk1 from the cytoplasm to the plas-
ma membrane, which is crucial for the onco-
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genic signaling by this enzyme [25]. An early 
study has suggested that the translocation of 
Sphk1 is a calcium-dependent process medi-
ated by calcium and integrin-binding protein 1 
[38]. A recent study has proposed a feedback 
regulatory mechanism including vascular endo-
thelial growth factor and calcium [39]. The 
results of the present study showed that his-
pidulin suppressed the activity by interfering 
with the phosphorylation and translocation of 
Sphk1 without affecting the mRNA and protein 
expression of Sphk1, suggesting that hispidulin 
might inhibit the activity of Sphk1 through  
modulating factors in the regulatory feedback. 
Hispidulin has been found to suppress presyn-
aptic voltage-dependent Ca² entry in rat cere-
bral cortex nerve terminals [40]. However, 
whether hispidulin can exert a similar effect in 
cancerous cells remains to be elucidated.

In summary, the findings in the current study 
showed that hispidulin suppressed tumor 
growth and metastasis in RCC. Furthermore, 
the results also showed that hispidulin inhibit-
ed Sphk1 activity and consequently modulated 
ceramide-S1P rheostat, which contributed to 
its anticancer effect.
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