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Abstract: The mTOR pathway was discovered in the late 1970s after the compound and natural inhibitor of mTOR,
rapamycin was isolated from the bacterium Streptomyces hygroscopicus. mTOR is serine/threonine kinase be-
longing to the phosphoinositide 3-kinase related kinase (PIKK) family. It forms two distinct complexes; mTORC1
and mTORC2. mTORC1 has a key role in regulating protein synthesis and autophagy whilst mTORC2 is involved in
regulating kinases of the AGC family. mTOR signaling is often over active in multiple cancer types including breast
cancer. This can involve mutations in mTOR itself but more commonly, in breast cancer, this is related to an increase
in activity of ErbB family receptors or alterations and mutations of PI3K signaling. Rapamycin and its analogues
(rapalogues) bind to the intercellular receptor FKBP12, and then predominantly inhibit mTORC1 signaling via an al-
losteric mechanism. Research has shown that inhibition of mTOR is a useful strategy in tackling cancers, with it act-
ing to slow tumor growth and limit the spread of a cancer. Rapalogues have now made their way into the clinic with
the rapalogue everolimus (RAD-001/Afinitor) approved for use in conjunction with exemestane, in post-menopausal
breast cancer patients with advanced disease who are HER-2 negative (normal expression), hormone receptor
positive and whose prior treatment with non-steroidal aromatase inhibitors has failed. Testing across multiple tri-
als has proven that everolimus and other rapalogues are a viable way of treating certain types of cancer. However,
rapalogues have shown some drawbacks both in research and clinically, with their use often activating feedback
pathways that counter their usefulness. As such, new types of inhibitors are being explored that work via different
mechanisms, including inhibitors that are ATP competitive with mTOR and which act to perturb signaling from both
mTOR complexes.
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Overview of mTOR signaling ed in most mammalian cells [2, 9], causing an
increase in cellular protein mass and growth
and inhibiting autophagy, with it generally act-
ing as a cellular sensor to nutrients and growth
factors, as well as being an important effecter
pathway of PI3K signalling [10].

The mTOR pathway was not uncovered until
the serendipitous discovery of rapamycin in
the late 1970s. This compound isolated from
the bacterium Streptomyces hygroscopicus
and named from the island on which it was

discovered (Easter Island/Rapa Nui), was found mTOR and mTOR complexes (mMTORCs)
to have strong anti-fungal, immune-suppres-
sant and anti-cancer properties. Rapamycin Residues 1-1375 of mTOR are not as well de-

was found to inhibit two yeast proteins named
the target of rapamycin (TOR) 1 and 2, with
the single mechanistic (previously mammalian)
TOR (mTOR) then later uncovered. From this
point, the mTOR pathway has been built around
this central protein which has been shown to
be a critical regulator of many important cellu-
lar processes [1-8].

fined as the rest of the protein, but predictive
modelling techniques and information from
related kinases suggest this N-terminal half
of the protein consists mostly of HEAT repeats
[11]. The remaining structure of the protein
is well defined, by crystal structure, consisting
of the FAT, FRB, kinase and FATC domains. ATP
binds within the kinase domain (KD), whilst
mTOR belongs to the phosphoinositide 3-kina- rapamycin-FKBP12 binds in the FRB domain
se related kinase (PIKK) family and is express- [12, 13].
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Figure 1. Basic structure of the 2549 residue protein, mTOR. The compo-

which binds to the complex

FATC via raptor. PRAS40 is belie-
‘L ved to have an inhibitory ef-
fect on mTORC1 function, with
KD (c-lobe) most studies showing incre-
T 2549 ased mTORC1/mTOR activity
in the absence of PRAS40,
mLST8

although this may be tissue
specific [28, 29]; PRAS40’s
inhibitory effect is speculated
to be due to the inhibition of
substrate binding [30].

mTORC2

nents of mMTORC1 and 2 are marked as to which mTOR domain, or complex

protein, they bind to. Components found in both complexes are marked in
black, specific mTORC1 components in grey and specific mMTORC2 compo-

nents in blue. Information: [11-13, 17, 18, 23, 24].

mTOR acts in one of two protein complexes;
mTORC1 or mTORC2 with a combination of
common and unique components (Figure 1).
mLST8 binds to mTOR at the kinase domain
C-lobe and data suggest that mLST8 is need-
ed for proper mTOR kinase function as well
as helping to stabilize the interaction between
mTOR and raptor, in mTORC1 [14]. Extremely
important to mTORC1 function is raptor, a 149
kDa protein that is usually found in a complex
with mTOR, binding to the mTOR HEAT repeats.

The sub-complex of Tel2 and Ttil act as a scaf-
folding structure to both mTOR complexes and
other PIKK proteins; Tel2 also binds to mTOR
via the HEAT repeats [15, 16], with heat shock
protein 90 (Hsp90), acting as a chaperone for
the Tel2-Ttil complex [17, 18]. DEPTOR is also
an inhibitor of mTOR function, binding to mTOR
on its FAT domain via DEPTOR’s PDZ domain
[19], with research showing an increase in
phosphorylation of mTOR targets after DEPTOR
knock down [20]. DEPTOR regulation is via its
degradation, with mTOR signaling triggering
the phosphorylation of DEPTOR, leading to its
ubiquitination by the E3 ligase, SCFFRC” [21,
22].

mTORC1

Raptor acts as a scaffold for mTORC1, not hav-
ing catalytic activity itself, but is required for full
activation of mTORC1 [25-27]. The mTOR com-
plexes also contain sub-units that act as inhibi-
tors of mTOR function. Unique to mTORC1 is the
proline-rich Akt substrate of 40 kDa (PRAS40),
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mMTORC?2 is less studied than
mTORC1, but many years of
research have begun to elu-
cidate more components and
functions of the second complex. Whilst mTO-
RC2 has a very different set of functions to
mTORC1, it does contain many of the same
subunits in a similar role; these include mTOR
itself, mLST8, DEPTOR and Tel2-Ttil. A defining
component of mMTORC2 is rictor, which forms
the basis of this second complex, also binding
to the HEAT repeats of mTOR. Like mLSTS, ric-
tor is needed for mTORC2 catalytic activity and
also acts as a scaffold for many proteins in
the complex [23, 31, 32]. Research by Martin
and colleagues [24] suggested that rictor may
act as a point of binding for Hsp70, with this
study also implicating Hsp70 as a key regulator
of mTORC2 function.

mSIN1 is an mTORC2 scaffold protein, which
binds to the complex via rictor. mSIN1 is thought
to be required for proper mTORC2 formation,
with it stabilizing the mTOR-rictor interaction.
mMTORC2 targets such as Akt also show mark-
edly decreased phosphorylation without mSI-
N1, showing mTORC'’s role in regulating kinase
activity of the complex [33, 34]. Protor 1 and 2
are the last major components of mTORC2.
Protor-1 and 2 bind to rictor within the complex,
but are not needed for stabilisation [28, 35,
36]. Protor-1 appears to play a role in mTORC2
activity towards one of its substrates, SGK1,
with a markedly decreased phosphorylation of
this target in protor-1 absence [36, 37]. Like
protor-1, protor-2 also appears to modulate
mMTORC2 in a substrate specific manner; with
work by Gan and colleagues [38] showing pro-
tor-2 may suppress mTORC2 phosphorylation
of PKC.
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Upstream signaling

mTOR itself is phosphorylated at multiple sites,
including a level of auto-phosphorylation at
Ser2481 [39], with some of this phosphoryla-
tion induced by growth factor signaling. Rese-
arch suggests many of these phosphorylated
sites (such as Ser2448) increase mTOR activity
and may be needed for proper mTORC1 func-
tion [40-43]. Intriguingly, work by Copp and col-
leagues [44], suggested that Ser2481 phos-
phorylation of mTOR could act as a good bio-
marker for intact mTORC2 complexes as mTO-
RC2 had predominantly Ser2481 phosphory-
lation, whilst mTORC1 had predominantly Ser-
2448 phosphorylation.

mTORC1

There are a variety of upstream pathways which
control mTORCZ1 activation, including growth
factor signaling, amino acid levels, cellular
energy levels and stress (reviewed by Sengupta
and colleagues [45]). The tubular sclerosis
complex (TSC) is a convergence point for many
of these upstream factors and is a key regula-
tor of mMTORC1 activity. The complex consists of
TSC1 (also known as Hamartin), TSC2 (also
known as Tuberin) and TBC1D7 [46], and func-
tions via the Rheb GTPase [47, 48]. Lysosomal
localization is important for mTORC1 activa-
tion with recent research suggesting that the
phosphorylation of TSC actually causes TSC
to dissociate from the lysosome, away from
mTORC1 and Rheb, activating mTORC1 [49].

The PI3K pathway is a key upstream regulator
of mTORC1, via TSC. Growth factors such as
IGF-1 and insulin activate phosphoinositide
3-kinase (PI3K), which in turn generates PIP,
from membrane-bound PIP,. This recruits
downstream effectors such as PDK1 and
Akt (also known as protein kinase B/PKB) via
their PH domains. Akt can then be activated
via phosphorylation by PDK1 on Thr308 and
Ser473 [50]. Akt is a critical regulator of TSC,
with active Akt phosphorylating TSC2 at multi-
ple sites, to weaken its interaction with TSC1
and destabilize the TSC2 protein. This in turn
activates mTORC1, as TSC2 can no longer
act as the GTPase activating protein (GAP) for
Rheb [51, 52]. Akt can also regulate mTORC1
activity by phosphorylating PRAS40, causing it
to bind to 14-3-3 proteins, thus relieving its
inhibitory effect on the complex [29].
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The Ras-Erk MAPK pathway can also lead to
downstream activation of mTORC1. Once Erk
is activated, it can directly phosphorylate and
inactivate TSC2 on Ser664 [53, 54] or phos-
phorylate p90 ribosomal S6 kinase 1 (RSK1),
leading to TSC2 inactivation via phosphoryla-
tion at Ser1798 [55].

Amino acid levels are critical regulators of
mTORC1 function; increased levels of amino
acids result in mTORC1 activation, and growth
factors are unable to activate mTORC1 without
the required level of amino acids [42, 56]. The
Rag GTPases are central to this regulation, act-
ing as dimers of either RagA or B dimerized with
either Rag C or D. In its active state, the com-
plex binds raptor, localizing mTORC1 to the ly-
sosome, and bringing it into contact with Rheb
[42, 57].

How the cell exactly translates amino acid lev-
els to mTORC1 activation is not well under-
stood, but many proteins are now being reve-
aled to have roles in this amino acid sensing.
The molecular pump v-ATPase is required for
activation of mTORC1, with it directly interact-
ing with the regulator complex and in turn
amino acids directly regulate this interaction
[58]. Of interest is work by Pena-Llopis and col-
leagues [59] which showed that mTORC1 may
be involved in positive feedback, with mTORC1
activation increasing v-ATPase expression. It is
probable that the full extent of the amino acid
sensing ‘machinery’ (in relation to mTORC1) is
yet to elucidated, but current candidates in-
clude MAP4K3 [60], SLC38A9 [61, 62] and
PAT1 (SLC36A1) [63].

Cellular energy levels also regulate mTORC1
activity, with low energy generally inhibiting
mTORC1, and reducing protein synthesis. This
is mainly via cellular levels of AMP decreasing
when ATP is low, activating AMPK, and causing
raptor phosphorylation and subsequent bind-
ing to 14-3-3 proteins, sequestering it away
from mTORC1 [64]. Activated AMPK also phos-
phorylates TSC2 on Thr1227 and Ser1345 to
activate (rather than inactivate, as is the case
when Akt phosphorylates TSC2 on Ser924
and Thr1518) the TSC to further decrease
mTORC1 signalling [51, 65]. Since downstream
mTORC1 activates protein synthesis it is im-
portant the cell only activates mTORC1 signal-
ing when it has the required resources, such
as ATP/energy and amino acids. Lower cellular
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oxygen levels and other cellular stresses also
reduce the activity of mTORC1. For example
stress such as hypoxia can induce regulated
in DNA damage and development 1 (REDD1),
which inhibits mMTORC1 function [66].

mTORC2

Although knowledge of mTORC2 signaling is
less defined than for mTORC1, research is be-
ginning to fill in gaps in our knowledge. It has
been known for a while that, like mTORC1,
mTORC?2 is activated by growth factors such as
insulin and IGF-1 [67]; although only mTORC2
complexes containing mSIN1 isoforms 1 and
2 (not 5) are activated by insulin [68]. Recent
research has shown that mSIN1 is a critical
mediator for growth factors to activate mTO-
RC2, with PI3K signaling linking the two. Mem-
brane bound PIP3 binds mSIN1 via its PH do-
main, relieving its interactions with mTORC2,
thus activating it [69, 70]. This is in contrast
to earlier findings which show that mSIN1 is
needed for mTORC2 activity [33, 34]. These
seemingly conflicting reports highlight the re-
latively poor understanding on the precise me-
chanism of mTORC2 action and activation.

Active PI3K signaling promotes mTORC2 activa-
tion and binding to ribosomes, possibly as a
mechanism to limit its activation only in grow-
ing cells with a high enough ribosome con-
tent [71]. Remarkably, whilst the TSC inhibits
mTORC1 function, it is suggested that, in at
least some cell lines (including the breast can-
cer cell line MCF7), the complex is needed
for full mMTORC2 activation as well as having a
physical interaction with mTORC2, independent
of its function with rheb [72].

Considering that DEPTOR was discovered rela-
tively recently, it is possible that there are
still MTOR complex components that have not
been discovered. If this is the case, it may
also explain why there are seemingly conflict-
ing conclusions on the role some of these pro-
teins, as there could be as yet undiscovered
interactions. Research by Luo and colleagues
[73] found that rapamycin can inhibit mSinl
phosphorylation independently of mTORC1 or 2
(raptor and rictor are not required), but the
mechanism of inhibition does involve mTOR
and mLST8. This again suggests that there
may be further mTOR complexes yet to be dis-
covered, that explain the observed effect.
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Downstream signaling
mTORC1

The molecular and cellular effects of mTO-
RC1 activation are well characterized, with
a number of processes regulated from this
point. Protein synthesis is critically regulated by
mTORC1 with mTORC1 phosphorylating both
elF4E-binding proteins (4E-BPs) and S6 kina-
ses including S6K2 and the multiple S6K1
isoforms.

p70-S6K1 is first phosphorylated on multiple
sites subsequently allowing phosphorylation of
Thr389 by mTORC1, followed by phosphoryla-
tion on Thr229 by PDK1 to fully activate the
kinase [74]. S6K1/2 then phosphorylates mul-
tiple proteins involved in the translation ma-
chinery. S6K1 activation is also believed to
promote transcription via its interactions with
transcription factors such as estrogen receptor
o (ERx), as well as regulating ribosomal gene
transcription [75, 76]. Unsurprisingly negative,
feedback loops exist along the mTORC1 axis
involving S6K1, with the active protein both
repressing the expression of IRS-1 and phos-
phorylating it on inhibitory serine residues [77].
MTORC1 also serves to feedback to mTORC2,
with S6K directly phosphorylating rictor, which
may serve to control activation of Akt [78].

mTOR phosphorylation of 4E-BP1 on sites
including Thr 37, 46 and 70 and Ser 65 by
mTOR, prevents the inhibitory action of the
4E-BPs on elFAE to allow the latter to initiate
cap-dependent translation [79, 80].

Autophagy is generally not needed when the
cell is healthy with a plentiful nutrient supply
activating mTORC1, and inactivating autophagy
through phosphorylation of kinases ULK1/2
and ATG13 [81-83]. The ULK complex also
cross-talks with the beclinl (or VSP34) com-
plex. nTORC1 can phosphorylate a member of
this complex called AMBRA1, to reduce ubiqui-
tination of ULK1 by the VSP34 complex protein,
TRAFG6. Unusually, rather than destroy the pro-
tein, this ubiquitination actually increases its
activity [84]. As AMPK reduces both mTOR sig-
naling, and increases ULK phosphorylation it
increases autophagy in cellular stress, in oppo-
sition to the mTOR pathway [85].

Aside from these functions, mTORC1 is also
partially involved in regulating other important
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cellular processes related to metabolism, such
as glycolysis via hypoxia inducible factor (HIF1x)
induction [86-88], lipid metabolism [89], and
de novo synthesis of pyrimidines [90].

mTORC2

MTORC2 regulates the activity of several pro-
teins belonging to the AGC kinase family and it
can, in one sense, be thought of as ‘upstream’
of mTORC1 as it is one of many regulators of
the AGC kinase, Akt. Akt has many downstream
effectors of its own, increasing proliferation,
cellular growth (e.g. its role in mTORC1 activa-
tion via TSC2), cell survival, angiogenesis and
metabolic processes [91]. mTORC2 directly
phosphorylates Akt on Serd73, which is re-
quired for its maximal activation [92]. However
mTORC2 is not the only activator of Akt, with
Akt substrates such as FoxOl1 being impair-
ed by mTORC2 depletion, when others like
GSK3p were not affected [33, 93].

MTORC2 also phosphorylates the AGC kinase
SGK1, thereby contributing to the regulation
of proliferation and apoptosis via FoxO3a [94],
ion channels such as Na* [95] and regulating
differentiation in cell types such as TH1 and
TH2 immune cells [96]. mTORC2 can affect cel-
lular shape, structure and morphology, specifi-
cally by altering the actin cytoskeleton, with
part of this control, at least, down to mTORC2
regulation of PKC, another member of the AGC
kinases [31, 32, 97].

As well as associating with ribosomes [71],
mTORC2 also associates with the endoplasmic
reticulum (ER) sub-compartment called the
mitochondria-associated ER (MAM). This sub
compartment is a key part of calcium and lipid
transfer, with mTORC2 deficiency directly lead-
ing to a disruption of these functions and MAM
integrity [98].

mTOR and breast cancer

Looking at the multitude of cellular events
mTOR complexes help regulate, it is of no sur-
prise that the activation of mTOR signaling is
associated with cancer and is perceived as
being oncogenic. The activation of mTOR com-
plexes will give tumors a vast growth advan-
tage, with an increased amount of protein syn-
thesis, as well increased inhibition of autopha-
gy. Thus whilst growing at an increased rate,
these cells are also less likely to die. Research
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has generally shown that activated mTOR sig-
naling leads to an increase in tumor progres-
sion and often a decrease in patient survival
[99, 100]. mTOR expression correlates for a
worse prognosis in breast cancer [101, 102]
with work by Walsh and Colleagues [103] show-
ing that phospho-mTOR was more common in
triple negative breast cancers. Despite the fact
that mTORC2 signaling can increase oncogenic
signals via Akt and mTOR signaling, research
has suggested that rictor expression, which is
required for mMTORC2 signaling, is actually lower
in breast tumors compared to normal breast
tissue [102]. This could suggest that mTORC1
signaling is more oncogenic than mTORC2 sig-
naling or that rictor is required in very specific
amounts for mTORC2 signaling; with too much
or too little ultimately inhibiting the mTORC2
arm.

In terms of how the mTOR pathway is altered
in cancer, it is found that the majority of al-
terations and mutations lie upstream of mTOR
itself and lead to an increased activation of
mTOR signaling. Common in many cancers, are
alterations to PI3Ks, which are key activators
of mMTOR via Akt and TSC1/2 and have been
shown to cause over activation of mTOR signal-
ling [104]. Activating mutations in the PIK3CA
gene (which encodes a subunit of PI3K) are
common in breast cancer, with the mutations
usually centered in kinase and helical domains
[105]. Other common mutations upstream of
mTOR occur in AKT, with altered or mutated
AKT and loss of PTEN detected in breast can-
cer [106]. Familial mutations in PTEN Cowden
Syndrome also increases the risk of develop-
ing sporadic cancers of the breast, thyroid and
kidneys [107].

Mutations and alterations of core mTOR com-
ponents (involved in either of the two mTOR
complexes) are by and large a lot rarer than
upstream mutations, but have still been noted
in cancers, within the last few years. With the
availability of more powerful sequencing tech-
nology combined with large online databases
containing sequencing data, many research
groups have been able to identify mutations in
mTOR itself [108-110]. These pieces of rese-
arch have shown that mutations have occurred
in a variety of cancer types and whilst these
alterations occur along the length of mTOR
(Figure 2), a high frequency have been found in
domains such as the FAT and FATC domains.
Since the latter forms part of the kinase do-
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tion hotspots along mTOR.
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main, it is no surprise that many of the muta-
tions identified in this research resulted in
either increased mTORC1 or 2 activity. Some
mutations in MTOR also showed decreased
binding to the inhibitor DEPTOR, possibly due to
mutations in the FAT domain [108].

mTOR and ER

The activation of mTOR signaling in cancer cells
is associated with resistance to multiple drug
therapies, especially in breast cancer where
this affect is well studied. Tamoxifen is a selec-
tive estrogen receptor modulator (SERM), bind-
ing to the nuclear ERq, to block it's binding to
estrogen and therefore block receptor activa-
tion. A majority of breast cancer patients are
estrogen receptor positive and so often receive
drugs like tamoxifen (if pre-menopausal), but
resistance to them is a common issue [111].
Whilst there are multiple mechanisms behind
this resistance, mTOR appears to have a major
role, with the mTOR pathway phosphorylating
ERa at Ser118, making it hyper sensitive to
activation and less likely to bind tamoxifen
[112]. Research has shown that in the long
term, breast cancer cells may use the PI3K/
Akt/mTOR axis to escape dependency from ER
signaling and thus increase their resistance to
tamoxifen [113]. Inhibiting the mTOR pathway
has been shown to also help re-sensitize cells
to anti-cancerous effects of tamoxifen [114].

mTOR and HER

Also key in breast cancer are the relative ex-
pression of ErbB/HER receptors. EGFR ap-
pears to be relatively commonly expressed,
with 17.1% of a study of 706 invasive ductal
breast carcinomas, showing over-expression
of EGFR [115]; expression of EGFR appears to
correlate well with HER-2 over-expression, sug-
gesting a therapeutic benefit to inhibiting both
types of receptor [116].
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Since HER family receptors
can activate PISBK-mTOR sig-

FALC naling, HER-2 expression is

important in the over-activa-

KD (c-lobe) tion of mTOR signaling in

T’E = > breast cancer. HER2 is am-

g < @ plified in upwards of 15-20%
N B 0 .

0 N2 of all breast cancers, which

can result in a nearly 100-fold

increase of protein expres-
sion. Its status as a key biomarker comes from
that fact that HER-2 expression correlates with
a much poorer prognosis and a generally more
aggressive cancer [117, 118]. mTOR signaling
has been linked with resistance to HER-2 thera-
pies in breast cancer, such as with the antibody
based drug trastuzumab [119], and the dual
EGFR (HER-1) and HER-2 inhibitor lapatinib
[120]. Activation of mTOR signaling in tumor
cells after ErbB inhibition can arise as a result
of mutations in the PI3K pathway and the use
of other growth factor receptors like IGF-1R (in
which HER-2-IGF-1R dimers can form), contrib-
uting to drug resistance [121, 122]. It is there-
fore of no surprise that in vivo studies have
shown an increased effect when rapamycin is
used with trastuzumab [123].

mTOR-targeted therapies
Rapalogues

Since its identification, over four decades ago,
rapamycin has been studied as a therapy for
a wide variety of diseases. With it being the
first mTOR inhibitor to be discovered, work on
rapamycin led to a new field devoted to eluci-
dating compounds that inhibited the mTOR
pathway. The first, and currently most widely
used, set of compounds, are rapamycin and its
analogues that are more commonly known as
‘rapalogues’. Rapamycin (structure shown in
Figure 3), also known as sirolimus, is a macro-
cyclic lactone, isolated from the bacterium
Streptomyces hygroscopicus initially noted for
its strong anti-fungal effect [8]. It was later
found to have strong immunosuppressive af-
fects, blocking T-cell activation [3] and in 1999
was originally approved for use as an immuno-
suppressant drug in the USA [124]; it is used
in procedures such as kidney transplantation,
to reduce rejection, risk of infections and also
to lower the incidence of post-surgery cancer
[125].
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Figure 3. Structure of rapamycin (sirolimus). Rapa-
logues vary from the parent rapamycin in mostly on
one small side group. This occurs as an O-substitu-
tion at carbon-40 on rapamycin, underlined on the
primary structure [129, 130].

Due to its inhibitory effect on mTOR, and thus
cellular growth, rapamycin was explored as
an anti-cancer agent. It was shown to inhibit
cellular proliferation and/or be effective in
several types of cancer including pancreatic
[126], colon [4], rhabdomycosarcoma [127]
and breast [124]. However, rapamycin has on
the whole not been taken forward for cancer
therapy due to its poor pharmacokinetic prop-
erties, including its low solubility [128].

Rapamycin derivatives/rapalogues have since
been developed to tackle these issues, open-
ing up new avenues for treatment for not
only cancers but a variety of other conditions.
These include everolimus (RAD-001), temsiroli-
mus (CCI-779), ridaforolimus (deforolimus, AB-
23573) and zotarolimus (ABT-578). Details of
these rapalogues can be found in Table 1.

Rapalogue mechanism of action

Rapalogues all inhibit mTOR, using the same
mechanism of action, which involves the in-
tracellular receptor and immunophilin, FK506
binding protein 12 kDa (FKBP12). FKBP12
binds FK506, and mediates immunosuppres-
sive actions via its alteration of the phospha-
tase calcineurin, with FKBP12 able to regulate
cellular levels of Ca?* [147, 148].

FKBP12 was shown early on to bind rapamycin,
and mediate its action through its binding to

389

mTOR, causing an inhibition of cell cycle pro-
gression [2]. The FKBP12-rapamycin complex
binds to mTOR at the FRB domain, acting th-
rough allosteric inhibition and conformational
changes in mTOR and mTORC1 [13, 149, 150],
resulting in decreased interaction between
mTOR and raptor [151] which could inhibit the
phosphorylation and activation of the major
MTORC1 downstream targets including S6K
and 4E-BP1. However, further, more in depth
research about events post-rapalogue treat-
ment has revealed a differentiation in the
amount of inhibition actually seen on each
MTORC1 substrate, with the levels of inhibition
of 4E-BP1 phosphorylation compared to S6K
varying greatly over time and between cell
types [152, 153]. Interestingly, the level of
auto-phosphorylation on mTOR in mTORC1 (but
not MTORC2) on Ser2481 is also greatly re-
duced upon rapamycin treatment [39].

Rapalogues were long thought to only inhi-
bit only mTORC1 complexes and their down-
stream effectors, with evidence at the time
supporting this theory [31]. However more in
depth study of rapamycin’s effect on mTORC2
has revealed that prolonged treatment does
in fact inhibit MTORC2 as well as mTORC1, with
rapamycin treatment directly affecting the as-
sembly of mTORC2 components, including ric-
tor. Therefore rather than binding directly to
mMTORC2, like it does mTORC1, the FKBP12-ra-
pamycin complex binds mTOR and then over
time stops the formation of new mTORC2 com-
plexes [154-156].

At a cellular level, rapalogues show many
effects useful for the treatment of cancer. Due
to the inhibition of protein translation, growth
of cells can be severely affected, limiting pro-
gression through the cell cycle, usually at the
G, phase, and ultimately inhibiting tumor
growth [2, 157]. Rapalogues have shown this
growth inhibitory effect in a wide variety of
cells, with rapamycin inhibiting the growth of
cancer cells including prostate [158], small cell
lung [159] and rhabdomycosarcoma [127].
Acting through similar mechanisms, everolimus
has been shown to inhibit the growth of can-
cer cells including breast [160], acute lym-
phoblastic leukemia (ALL) [161] and oral squa-
mous cell carcinoma (OSCC) [162].

Rapalogues are also able to induce autophagy

in certain cancer types, including breast can-
cer [163] and malignant gliomas [164] as well
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Table 1. Details, including clinical uses of the rapalogues; everolimus (RAD-001), temsirolimus (CCI-779), ridaforolimus (deforolimus, AB23573)
and zotarolimus (ABT-578)

Side Chain (O-substitution - -
Rapalogue . Description Clinical uses References
on rapamycin at carbon 40)
Everolimus (RAD-001) 2-hydroxyl-ethyl side chain. Approved for use in breast cancer, renal cell carcinoma and [128, 131-137]
Increased solubility over rapamycin, with neuroendrocrine tumors of the pancreas, lungs or gut. Used for
bioavailability around 15% higher. kidney transplants and tested in lung and heart transplants

Administered orally

Temsirolimus (CCI-779) Dihydroxymethyl-propanoic acid side group. Approved for use in renal cell carcinoma and mantle cell [129, 138-141]
\/g( Increased solubility over rapamycin. lymphoma. Tested at Phase Il and lll levels in breast cancer

,q Administered orally or IV
"o
|

Ridaforolimus (Deforolimus, AP23673) Qs Phosphine-oxide side group. More soluble Phase Il and Ill testing against sarcomas [142, 143]
than rapamycin in water and organic solvents

Zotarolimus (ABT-578) Tetrazole side ring replacing hydroxyl group Inhibits growth of coronary smooth muscle cells and is used to [124, 144-146)]

treat stenosis in drug eluting stents
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as having an apoptotic effect on human den-
dritic cells [165]. Whilst this increase in autoph-
agy is not surprising due to mTORC1 control
over autophagy initiation and ULK1/2 phos-
phorylation [81], it is not widely noted in cancer
types, where cell cycle arrest and growth inhibi-
tion appear to be the primary cellular means by
which rapalogues act. Everolimus, like rapamy-
cin, can also cause an increase in apoptosis
within breast cancer and rhabdomycosarcoma
cell cultures [166-168].

However, inhibiting mTOR signaling in this man-
ner has its drawbacks in terms of the desired
molecular effect, highlighting possible issues
when applying rapalogues in a clinical setting.
Usually, negative feedbacks loops exist to per-
turb over-active mTOR signaling, with S6K inhib-
iting IRS-1 to reduce mTOR activation via insu-
lin/IGF-1 signalling [77, 169]. Thus, in rapalogue
treatment, cells may actually be more sensitive
to PIBK-mTOR activation via growth factor sig-
nals such as insulin [170]. The inhibition of
mTORC1 (on a short term scale) seems to also
favor the formation of mTORC2 complexes,
shifting mTOR signaling burden from one arm to
the other [171]. In line with this, and the fact
that mTORC2 leads to increased Akt phosphor-
ylation at Ser473 [32], rapalogue treatment
appears to lead to increased Akt activation.
This not only further increases upstream sig-
nals activating the mTOR pathway but also
increases the activation of various survival
pathways associated with Akt activation [172].
Everolimus and other rapalogues, have been
shown to abolish the negative feedback on
IRS-1/insulin signaling, up-regulating and fur-
ther activating growth factor signaling via PI3K
and Akt in both cancer cell cultures and patient
samples [173, 174]. Patients with metastatic
cancer have also shown up-regulation of other
signaling pathways including MAPK signaling,
when treated with everolimus [175].

Clinical applications of everolimus and rapa-
logues in breast cancer

Rapamycin

Many rapalogues have now made their way into
clinical use, or are being explored for therapeu-
tic in breast cancer patients. Whilst it may
be the ‘founding member’ of the rapalogues,
rapamycin is not used on a large scale in can-
cer therapeutics and is unlikely to have future
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impact as a sole agent. Whilst not yet approved
for use in breast cancer, it has shown some
small efficacy in the treatment of this disease
when used as a combination therapy. Phase |
trial data in HER-2 positive patients suggested
adding rapamycin may benefit trastuzumab
treatment [176] and that the combination of
resveratrol with rapamycin may stop Akt feed-
back activation in breast cancer cells [177].

Temsirolimus

Temsirolimus has been approved for use in
renal cell carcinomas since 2007 in the EU
[140] and is mainly used as a first line treat-
ment for patients with poor-risk disease, with
increased aggressiveness and decreased prog-
nosis. Phase lll trial data has shown it improves
median survival among this group [178]; how-
ever temsirolimus trials in breast cancer have
produced inconclusive and ‘mild’ results at
best. One phase Il study found no objective
response in the observed cohort, although the
study size was small at only 31 patients [179]
and a separate phase |l trial, using a larger
cohort, showed a very modest response, with
only 9.2% patients showing partial response
to the drug [138]. Phase lll trials of this drug
combined with the aromatase inhibitor letro-
zole, in the HORIZON trials in post-menopausal
women, again showed disappointing results
and a lack of improved patient survival [141].
Interestingly, Rangwala and colleagues [180]
showed that combining a rapalogue like temsi-
rolimus with the autophagy inhibitor hydroxy-
chloroquine (HCQ), was well tolerated and
showed anti-tumor activity in melanoma
patients, suggesting this may be a valuable
area of exploration for breast cancer combina-
tion therapy in the future.

Ridaforolimus

Although not currently approved for clinical use
in cancer treatment, ridaforolimus has been
explored in a number of trials for various cancer
types including breast cancer. A phase Il trial
with ridaforolimus combined with trastuzumab,
in HER-2 positive, trastuzumab-refractory met-
astatic breast cancer patients, showed good
anti-tumor activity. The rate of response was
similar to that with patients treated with first
line trastuzumab, suggesting that a rapalogue
like ridaforolimus may help overcome resis-
tance to trastuzumab [181]. Phase Il trials of
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ridaforolimus in endometrial cancer, refractory
hematological cancers and soft and bone sar-
comas has also shown some promising results
in terms of anti-tumor activity, giving cause for
possible further investigation [142, 182, 183].

Everolimus

In breast cancer, everolimus has shown many
productive results, across a variety of clinical
trials. As such, in 2012 everolimus (marketed
as Afinitor) was approved for use in combina-
tion with the steroidal aromatase inhibitor ex-
emestane in breast cancer patients with ad-
vanced cancer that is hormone receptor posi-
tive, HER-2 negative (non-over-expressing), and
whose prior treatment with a non-steroidal aro-
matase inhibitor (such as letrozole or anastra-
zole) had failed [132, 184, 185]. Key evidence
for the use of everolimus in this subset of
cancer patients came from the phase Il BO-
LERO-2 (breast cancer trials of oral everolimus)
clinical trial. This trial looked at the effect of
combining everolimus with exemestane, in a
subset of patients, where the cancer was re-
fractory to non-steroidal aromatase inhibitors
(all patients had received prior treatment with
either letrozole or anastrazole). The patient set
included those who had already been treat-
ed with one set of chemotherapy and/or hor-
monal therapy, and excluded patients who had
already been treated with exemestane or other
mTOR inhibitors. Patients treated with the com-
bination of everolimus plus exemestane had
a statistically significant increase in progres-
sion free survival (PFS), compared to exemes-
tane and placebo treated patients; there was a
PFS average of 2.8-4.1 months in the placebo
arm compared 6.9-10.6 months in the everoli-
mus arm of the trial. In terms of toxicity, the
combination treatment was also well tolerated,
according to quality of life (QOL) end-points
and ECOG status [186-188]. These results are
positive compared to the rather flat results of
the HORIZON trial; both used a rapalogue in
conjunction with an aromatase inhibitor, how-
ever it is possible that the use of a steroidal
aromatase inhibitor (exemestane) enhanced
the effects of the rapalogue in a greater way
compared to its non-steroidal counter-part
(letrozole).

Rapalogues and drug-resistance

Since mTOR activation can often confer a resis-
tance to trastuzumab [119] it seems a viable
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option to use a rapalogue to increase patient
sensitivity to this therapy once again. Phase Il
trial data validated this thinking, with results
showing that patients on a regime of trastu-
zumab and paclitaxel (who had progressed
whilst on trastuzumab treatment and were
HER-2 positive) were showing increased PFS
times and response rates to the therapy, with
the weekly addition of everolimus [189]. How-
ever results from the phase Ill BOLERO-1 trial
in a similar area were not as positive. The trial
included patients with HER-2 positive (over-
expressing) tumors with advanced disease
who had not received chemotherapy (including
trastuzumab) within the last 12 months. This
time the addition of everolimus to trastuzumab
and paclitaxel did not improve outcomes in
a significant way although some small advan-
tage to this treatment was noted in women who
were hormone/ER receptor negative [190].

The BOLERO-3 phase Il trial also studied
women with advanced HER-2 positive cancers
who were trastuzumab resistant and had previ-
ously received taxane treatment. The addition
of everolimus to a regime of trastuzumab and
vinorelbine increased PFS significantly, albeit
by a small amount, compared to the placebo,
group from a median of 5.78 months to 7
months. Again the sub-group of patients who
were hormone receptor negative showed an
increased efficacy of everolimus [191]. The
data from the BOLERO-1 and 3 trials suggest
that in HER-2 positive patients, hormone/ER
receptor status may be key to everolimus effi-
cacy. Since mTOR signaling can directly alter
ER signalling [112] and is a direct target of
growth factor signaling like that of HER family
receptors [42], it is perhaps no surprise that
these multiple pathways connect in relation to
therapy efficacy.

Considering the importance of selective estro-
gen receptor modulators (SERMs), the use of
everolimus has also been explored in conjunc-
tion with tamoxifen. Phase Il clinical trial data
for this drug combination in post-menopausal
advanced breast cancer patients who were
HER-2 negative, hormone receptor positive and
resistant to aromatase inhibitors, have been
positive. Results suggested a significant incre-
ase in time to progression and overall clinical
benefit [192]. A small phase Il study in triple-
negative breast cancer patients showed that
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the combination of carboplatin and everolimus
may have clinical benefit in this set of breast
cancers [193]; however, the addition of everoli-
mus to a regime of paclitaxel and bevacizumab
was not shown to significantly increase efficacy
of this combination drug regime [194].

Resistance to rapalogues

Whilst it is clear that the rapalogues have wide
potential in the clinic, as in the case of everoli-
mus use in breast cancer, they also are associ-
ated with key issues that may ultimately limit
their application and range in terms of thera-
peutic use. Resistance to rapalogues (and a
lack of efficacy to treatment) has been noted in
many settings and can been caused by a host
of factors. The inhibition of mTOR with rapa-
logues can alter feedback pathways that exist
within PIBK-mTOR signaling as well as activate
Akt signaling by shifting the burden of signal-
ing towards mTORC2 [32, 172]. This reduces
the anti-cancer effects that rapalogues have
[195], and inhibition of Akt can directly re-sen-
sitize breast and colon cancer cells to rapa-
logue treatment, partially via increased inhibi-
tion of PRAS40 phosphorylation, increasing its
inhibitory effect on mTORC1 [196]. This same
feedback effect on Akt has been noted in lung
cancer cells where PI3K inhibition, again re-
sensitized the cells to rapamycin treatment
[172]. Since mTOR inhibition can activate apop-
tosis, a lack of functional apoptotic pathways
can reduce their effectiveness as well [195].
Unsurprisingly, breast cancer cells with a high-
er reliance/activation of mTORC1 signaling, as
shown by over-expression of phosphorylated
S6K, show increased inhibition by rapalogues
[197].

Many other signaling pathways and processes
can affect and induce rapalogue resistance.
For example MCF-7 breast cancer cells that
have developed tamoxifen resistance are in-
trinsically resistant to everolimus [198]. Re-
search suggests that expression of epithelial-
mesenchymal transition (EMT) markers such
as snail increase resistance to rapamycin, whi-
Ist expression of pre-EMT markers like E-cad-
herin increase breast cancer cell sensitivity to
rapamycin, in vitro [199]. In breast cells (includ-
ing the MCF-7 cell line) that were induced to
be everolimus resistant, MYC was suggested to
play a role in the resistance process, as an up-
regulation of MYC was seen in the resistant
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lines and depletion of MYC re-sensitized the
cells to everolimus once more [200]. MCF-7
cells treated with rapamycin also showed an
up-regulation of transglutaminase 2 (TGM2),
seemingly as a compensatory mechanism, with
TGM2 inhibition re-sensitizing cells to rapamy-
cin [201]. Work with breast, colorectal and
renal cancer cells also implicates Met to be
involved a mechanism of rapalogue resistance,
with increased Met activation conferring resis-
tance [202]. Mutations could also induce rapa-
logue resistance breast cell lines; mutations in
mTOR’s FRB domain (induced after long term
rapamycin treatment) resulted in insensitivity
to rapamycin, even over a period of weeks.
Cells with this type of mutation are however still
sensitive to ATP-competitive inhibitors of mTOR
[203].

Alternatives to rapalogues

Inhibiting mTOR via FKBP12 is by no means the
only way to achieve the overall effect of block-
ing mTOR activity. In fact there are now multi-
ple, well explored, ways to block mTOR signal-
ing, many of which circumnavigate the issues
that arise with rapalogue use. Whilst these still
present with their own issues, such as side
effects, they have shown promising efficacy in
the field of cancer treatment and early clinical
trial stages and it is very possible that they will
make their way into the clinical setting [204].

Unlike rapalogues that allosterically inhibit
mTOR, ATP-competitive inhibitors block ATP
binding and reduce the activity of both mTOR
complexes. Due to the related sequence nature
of mTOR (and other PIKK family proteins) and
PI3K, many of the ATP competitive inhibitors
also inhibit PI3K as well as mTOR. These inhi-
bitors therefore reduce signaling across the
entire PI3K-Akt-mTOR axis and reduce the pro-
blems of feedback activation to PI3K signal-
ing or mTORC2 activation [205]. BEZ235 and
PF-04691502 are both dual PI3K-mTOR inhi-
bitor of this class and have been studied for
their anti-cancer efficacy in breast cancer. Both
shown an anti-proliferative effect on cancer
cells (and some tumors) and inhibition of PI3K-
mTOR signalling [206, 207]. However, since
PI3K signaling controls such a broad range of
downstream pathways and processes vital for
a cell, inhibiting both PI3K and mTOR may have
serious side effects that could limit the clini-
cal application of such inhibitors. For example,
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in a phase Il study of BEZ235 in pancreatic
neuroendocrine patients who were everolimus
resistant, the drug was poorly tolerated, limit-
ing the trial progression [208].

More specific ATP-completive inhibitors, that
only target mTOR, and thus block mTORC1 and
2 are becoming more favorable. The drugs
MLNO0128, CC-223 and ADZ2014 have all sh-
own promising results in terms of their anti-
cancerous effects in breast cancer. AZD2014
and MLNO128 both show good anti-prolifera-
tive and anti-tumor effect in vitro and in vivo
reducing signaling from mTORC1 and mTORC2,
with MLNO128 also able to inhibit the growth
of rapamycin-resistant breast cancer cells
[209-211]. A phase | study of CC-223 has been
relatively promising; it is well tolerated, with a
partial response noted in a breast cancer pa-
tient, and disease stability in multiple types of
cancer, as well as good inhibition of mTORC1
and 2 in patients [209].

Despite the issues of inhibiting PI3K, pan-PI3K
inhibitors, such as the buparlisib (BKM120)
have shown early promise in tackling breast
cancers. Buparlisib widely inhibits PI3Ks but
not does not directly inhibit mTOR; phase | data
with buparlisib in combination with either
trastuzumab [212] or fulvestrant [213] shows
the drug to be well tolerated in breast cancer
patients with some signs of disease manage-
ment. PI3K inhibition may also be a viable
way of avoiding resistance to rapalogues with
buparlisib use, in combination with everolimus
(or trastuzumab), reducing the occurrence of
resistance to these drugs whilst also showing
good growth inhibition, in vivo [214].

Inhibiting Akt directly is another alternative
therapeutic option to rapalogues that has sh-
own potential at a research stage and early
clinical levels. In terms of breast cancer thera-
peutics, MK-2206, an allosteric inhibitor of Akt
is perhaps the most promising of the selective
Akt inhibitors. Multiple phase | trials have sug-
gested this may hold key therapeutic benefit
and it has been tested in a similar settings to
the BOLERO trails. MK-2206 in combination
with paclitaxel and trastuzumab, (similar to the
BOLERO-1 trial), was well tolerated, with 63%
of patients showing a clinical response [215].
Likewise, MK-2206 in combination with anas-
trazole was also well tolerated and 42% of
patients showed clinical benefit. Due to these
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successes, phase |l trials are underway with
MK-2206 [216]. Preclinical evidence for the
efficacy of the ATP competitive inhibitor, AZD-
5363, is also positive, with breast cancers
cells and xenografts showing some of the best
responses to this drug of all malignancies test-
ed [217].
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