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Abstract: The mTOR pathway was discovered in the late 1970s after the compound and natural inhibitor of mTOR, 
rapamycin was isolated from the bacterium Streptomyces hygroscopicus. mTOR is serine/threonine kinase be-
longing to the phosphoinositide 3-kinase related kinase (PIKK) family. It forms two distinct complexes; mTORC1 
and mTORC2. mTORC1 has a key role in regulating protein synthesis and autophagy whilst mTORC2 is involved in 
regulating kinases of the AGC family. mTOR signaling is often over active in multiple cancer types including breast 
cancer. This can involve mutations in mTOR itself but more commonly, in breast cancer, this is related to an increase 
in activity of ErbB family receptors or alterations and mutations of PI3K signaling. Rapamycin and its analogues 
(rapalogues) bind to the intercellular receptor FKBP12, and then predominantly inhibit mTORC1 signaling via an al-
losteric mechanism. Research has shown that inhibition of mTOR is a useful strategy in tackling cancers, with it act-
ing to slow tumor growth and limit the spread of a cancer. Rapalogues have now made their way into the clinic with 
the rapalogue everolimus (RAD-001/Afinitor) approved for use in conjunction with exemestane, in post-menopausal 
breast cancer patients with advanced disease who are HER-2 negative (normal expression), hormone receptor 
positive and whose prior treatment with non-steroidal aromatase inhibitors has failed. Testing across multiple tri-
als has proven that everolimus and other rapalogues are a viable way of treating certain types of cancer. However, 
rapalogues have shown some drawbacks both in research and clinically, with their use often activating feedback 
pathways that counter their usefulness. As such, new types of inhibitors are being explored that work via different 
mechanisms, including inhibitors that are ATP competitive with mTOR and which act to perturb signaling from both 
mTOR complexes. 
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Overview of mTOR signaling

The mTOR pathway was not uncovered until  
the serendipitous discovery of rapamycin in  
the late 1970s. This compound isolated from 
the bacterium Streptomyces hygroscopicus 
and named from the island on which it was  
discovered (Easter Island/Rapa Nui), was found 
to have strong anti-fungal, immune-suppres-
sant and anti-cancer properties. Rapamycin 
was found to inhibit two yeast proteins named 
the target of rapamycin (TOR) 1 and 2, with  
the single mechanistic (previously mammalian) 
TOR (mTOR) then later uncovered. From this 
point, the mTOR pathway has been built around 
this central protein which has been shown to  
be a critical regulator of many important cellu-
lar processes [1-8].

mTOR belongs to the phosphoinositide 3-kina- 
se related kinase (PIKK) family and is express- 

ed in most mammalian cells [2, 9], causing an 
increase in cellular protein mass and growth 
and inhibiting autophagy, with it generally act-
ing as a cellular sensor to nutrients and growth 
factors, as well as being an important effecter 
pathway of PI3K signalling [10]. 

mTOR and mTOR complexes (mTORCs)

Residues 1-1375 of mTOR are not as well de- 
fined as the rest of the protein, but predictive 
modelling techniques and information from 
related kinases suggest this N-terminal half  
of the protein consists mostly of HEAT repeats 
[11]. The remaining structure of the protein  
is well defined, by crystal structure, consisting 
of the FAT, FRB, kinase and FATC domains. ATP 
binds within the kinase domain (KD), whilst 
rapamycin-FKBP12 binds in the FRB domain 
[12, 13]. 
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mTOR acts in one of two protein complexes; 
mTORC1 or mTORC2 with a combination of 
common and unique components (Figure 1). 
mLST8 binds to mTOR at the kinase domain 
C-lobe and data suggest that mLST8 is need- 
ed for proper mTOR kinase function as well  
as helping to stabilize the interaction between 
mTOR and raptor, in mTORC1 [14]. Extremely 
important to mTORC1 function is raptor, a 149 
kDa protein that is usually found in a complex 
with mTOR, binding to the mTOR HEAT repeats. 

The sub-complex of Tel2 and Tti1 act as a scaf-
folding structure to both mTOR complexes and 
other PIKK proteins; Tel2 also binds to mTOR 
via the HEAT repeats [15, 16], with heat shock 
protein 90 (Hsp90), acting as a chaperone for 
the Tel2-Tti1 complex [17, 18]. DEPTOR is also 
an inhibitor of mTOR function, binding to mTOR 
on its FAT domain via DEPTOR’s PDZ domain 
[19], with research showing an increase in 
phosphorylation of mTOR targets after DEPTOR 
knock down [20]. DEPTOR regulation is via its 
degradation, with mTOR signaling triggering  
the phosphorylation of DEPTOR, leading to its 
ubiquitination by the E3 ligase, SCFβTRCP [21, 
22]. 

mTORC1

Raptor acts as a scaffold for mTORC1, not hav-
ing catalytic activity itself, but is required for full 
activation of mTORC1 [25-27]. The mTOR com-
plexes also contain sub-units that act as inhibi-
tors of mTOR function. Unique to mTORC1 is the 
proline-rich Akt substrate of 40 kDa (PRAS40), 

functions of the second complex. Whilst mTO- 
RC2 has a very different set of functions to 
mTORC1, it does contain many of the same 
subunits in a similar role; these include mTOR 
itself, mLST8, DEPTOR and Tel2-Tti1. A defining 
component of mTORC2 is rictor, which forms 
the basis of this second complex, also binding 
to the HEAT repeats of mTOR. Like mLST8, ric-
tor is needed for mTORC2 catalytic activity and 
also acts as a scaffold for many proteins in  
the complex [23, 31, 32]. Research by Martin 
and colleagues [24] suggested that rictor may 
act as a point of binding for Hsp70, with this 
study also implicating Hsp70 as a key regulator 
of mTORC2 function. 

mSIN1 is an mTORC2 scaffold protein, which 
binds to the complex via rictor. mSIN1 is thought 
to be required for proper mTORC2 formation, 
with it stabilizing the mTOR-rictor interaction. 
mTORC2 targets such as Akt also show mark-
edly decreased phosphorylation without mSI- 
N1, showing mTORC’s role in regulating kinase 
activity of the complex [33, 34]. Protor 1 and 2 
are the last major components of mTORC2. 
Protor-1 and 2 bind to rictor within the complex, 
but are not needed for stabilisation [28, 35, 
36]. Protor-1 appears to play a role in mTORC2 
activity towards one of its substrates, SGK1, 
with a markedly decreased phosphorylation of 
this target in protor-1 absence [36, 37]. Like 
protor-1, protor-2 also appears to modulate 
mTORC2 in a substrate specific manner; with 
work by Gan and colleagues [38] showing pro-
tor-2 may suppress mTORC2 phosphorylation 
of PKC.

Figure 1. Basic structure of the 2549 residue protein, mTOR. The compo-
nents of mTORC1 and 2 are marked as to which mTOR domain, or complex 
protein, they bind to. Components found in both complexes are marked in 
black, specific mTORC1 components in grey and specific mTORC2 compo-
nents in blue. Information: [11-13, 17, 18, 23, 24].

which binds to the complex 
via raptor. PRAS40 is belie- 
ved to have an inhibitory ef- 
fect on mTORC1 function, with 
most studies showing incre- 
ased mTORC1/mTOR activity 
in the absence of PRAS40, 
although this may be tissue 
specific [28, 29]; PRAS40’s 
inhibitory effect is speculated 
to be due to the inhibition of 
substrate binding [30].

mTORC2

mTORC2 is less studied than 
mTORC1, but many years of 
research have begun to elu- 
cidate more components and 
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Upstream signaling

mTOR itself is phosphorylated at multiple sites, 
including a level of auto-phosphorylation at 
Ser2481 [39], with some of this phosphoryla-
tion induced by growth factor signaling. Rese- 
arch suggests many of these phosphorylated 
sites (such as Ser2448) increase mTOR activity 
and may be needed for proper mTORC1 func-
tion [40-43]. Intriguingly, work by Copp and col-
leagues [44], suggested that Ser2481 phos-
phorylation of mTOR could act as a good bio-
marker for intact mTORC2 complexes as mTO- 
RC2 had predominantly Ser2481 phosphory- 
lation, whilst mTORC1 had predominantly Ser- 
2448 phosphorylation. 

mTORC1

There are a variety of upstream pathways which 
control mTORC1 activation, including growth 
factor signaling, amino acid levels, cellular 
energy levels and stress (reviewed by Sengupta 
and colleagues [45]). The tubular sclerosis 
complex (TSC) is a convergence point for many 
of these upstream factors and is a key regula-
tor of mTORC1 activity. The complex consists of 
TSC1 (also known as Hamartin), TSC2 (also 
known as Tuberin) and TBC1D7 [46], and func-
tions via the Rheb GTPase [47, 48]. Lysosomal 
localization is important for mTORC1 activa- 
tion with recent research suggesting that the 
phosphorylation of TSC actually causes TSC  
to dissociate from the lysosome, away from 
mTORC1 and Rheb, activating mTORC1 [49]. 

The PI3K pathway is a key upstream regulator 
of mTORC1, via TSC. Growth factors such as 
IGF-1 and insulin activate phosphoinositide 
3-kinase (PI3K), which in turn generates PIP3 
from membrane-bound PIP2. This recruits 
downstream effectors such as PDK1 and  
Akt (also known as protein kinase B/PKB) via 
their PH domains. Akt can then be activated  
via phosphorylation by PDK1 on Thr308 and 
Ser473 [50]. Akt is a critical regulator of TSC, 
with active Akt phosphorylating TSC2 at multi-
ple sites, to weaken its interaction with TSC1 
and destabilize the TSC2 protein. This in turn 
activates mTORC1, as TSC2 can no longer  
act as the GTPase activating protein (GAP) for 
Rheb [51, 52]. Akt can also regulate mTORC1 
activity by phosphorylating PRAS40, causing it 
to bind to 14-3-3 proteins, thus relieving its 
inhibitory effect on the complex [29]. 

The Ras-Erk MAPK pathway can also lead to 
downstream activation of mTORC1. Once Erk  
is activated, it can directly phosphorylate and 
inactivate TSC2 on Ser664 [53, 54] or phos-
phorylate p90 ribosomal S6 kinase 1 (RSK1), 
leading to TSC2 inactivation via phosphoryla-
tion at Ser1798 [55]. 

Amino acid levels are critical regulators of 
mTORC1 function; increased levels of amino 
acids result in mTORC1 activation, and growth 
factors are unable to activate mTORC1 without 
the required level of amino acids [42, 56]. The 
Rag GTPases are central to this regulation, act-
ing as dimers of either RagA or B dimerized with 
either Rag C or D. In its active state, the com-
plex binds raptor, localizing mTORC1 to the ly- 
sosome, and bringing it into contact with Rheb 
[42, 57]. 

How the cell exactly translates amino acid lev-
els to mTORC1 activation is not well under-
stood, but many proteins are now being reve- 
aled to have roles in this amino acid sensing. 
The molecular pump v-ATPase is required for 
activation of mTORC1, with it directly interact-
ing with the regulator complex and in turn 
amino acids directly regulate this interaction 
[58]. Of interest is work by Pena-Llopis and col-
leagues [59] which showed that mTORC1 may 
be involved in positive feedback, with mTORC1 
activation increasing v-ATPase expression. It is 
probable that the full extent of the amino acid 
sensing ‘machinery’ (in relation to mTORC1) is 
yet to elucidated, but current candidates in- 
clude MAP4K3 [60], SLC38A9 [61, 62] and 
PAT1 (SLC36A1) [63].

Cellular energy levels also regulate mTORC1 
activity, with low energy generally inhibiting 
mTORC1, and reducing protein synthesis. This 
is mainly via cellular levels of AMP decreasing 
when ATP is low, activating AMPK, and causing 
raptor phosphorylation and subsequent bind-
ing to 14-3-3 proteins, sequestering it away 
from mTORC1 [64]. Activated AMPK also phos-
phorylates TSC2 on Thr1227 and Ser1345 to 
activate (rather than inactivate, as is the case 
when Akt phosphorylates TSC2 on Ser924  
and Thr1518) the TSC to further decrease 
mTORC1 signalling [51, 65]. Since downstream 
mTORC1 activates protein synthesis it is im- 
portant the cell only activates mTORC1 signal-
ing when it has the required resources, such  
as ATP/energy and amino acids. Lower cellular 
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oxygen levels and other cellular stresses also 
reduce the activity of mTORC1. For example 
stress such as hypoxia can induce regulated  
in DNA damage and development 1 (REDD1), 
which inhibits mTORC1 function [66]. 

mTORC2

Although knowledge of mTORC2 signaling is 
less defined than for mTORC1, research is be- 
ginning to fill in gaps in our knowledge. It has 
been known for a while that, like mTORC1, 
mTORC2 is activated by growth factors such as 
insulin and IGF-1 [67]; although only mTORC2 
complexes containing mSIN1 isoforms 1 and  
2 (not 5) are activated by insulin [68]. Recent 
research has shown that mSIN1 is a critical 
mediator for growth factors to activate mTO- 
RC2, with PI3K signaling linking the two. Mem- 
brane bound PIP3 binds mSIN1 via its PH do- 
main, relieving its interactions with mTORC2, 
thus activating it [69, 70]. This is in contrast  
to earlier findings which show that mSIN1 is 
needed for mTORC2 activity [33, 34]. These 
seemingly conflicting reports highlight the re- 
latively poor understanding on the precise me- 
chanism of mTORC2 action and activation.

Active PI3K signaling promotes mTORC2 activa-
tion and binding to ribosomes, possibly as a 
mechanism to limit its activation only in grow-
ing cells with a high enough ribosome con- 
tent [71]. Remarkably, whilst the TSC inhibits 
mTORC1 function, it is suggested that, in at 
least some cell lines (including the breast can-
cer cell line MCF7), the complex is needed  
for full mTORC2 activation as well as having a 
physical interaction with mTORC2, independent 
of its function with rheb [72]. 

Considering that DEPTOR was discovered rela-
tively recently, it is possible that there are  
still mTOR complex components that have not 
been discovered. If this is the case, it may  
also explain why there are seemingly conflict- 
ing conclusions on the role some of these pro-
teins, as there could be as yet undiscovered 
interactions. Research by Luo and colleagues 
[73] found that rapamycin can inhibit mSin1 
phosphorylation independently of mTORC1 or 2 
(raptor and rictor are not required), but the 
mechanism of inhibition does involve mTOR 
and mLST8. This again suggests that there  
may be further mTOR complexes yet to be dis-
covered, that explain the observed effect. 

Downstream signaling

mTORC1

The molecular and cellular effects of mTO- 
RC1 activation are well characterized, with  
a number of processes regulated from this 
point. Protein synthesis is critically regulated by 
mTORC1 with mTORC1 phosphorylating both 
eIF4E-binding proteins (4E-BPs) and S6 kina- 
ses including S6K2 and the multiple S6K1 
isoforms. 

p70-S6K1 is first phosphorylated on multiple 
sites subsequently allowing phosphorylation of 
Thr389 by mTORC1, followed by phosphoryla-
tion on Thr229 by PDK1 to fully activate the 
kinase [74]. S6K1/2 then phosphorylates mul-
tiple proteins involved in the translation ma- 
chinery. S6K1 activation is also believed to  
promote transcription via its interactions with 
transcription factors such as estrogen receptor 
α (ERα), as well as regulating ribosomal gene 
transcription [75, 76]. Unsurprisingly negative, 
feedback loops exist along the mTORC1 axis 
involving S6K1, with the active protein both 
repressing the expression of IRS-1 and phos-
phorylating it on inhibitory serine residues [77]. 
mTORC1 also serves to feedback to mTORC2, 
with S6K directly phosphorylating rictor, which 
may serve to control activation of Akt [78].  

mTOR phosphorylation of 4E-BP1 on sites 
including Thr 37, 46 and 70 and Ser 65 by 
mTOR, prevents the inhibitory action of the 
4E-BPs on eIF4E to allow the latter to initiate 
cap-dependent translation [79, 80].  

Autophagy is generally not needed when the 
cell is healthy with a plentiful nutrient supply 
activating mTORC1, and inactivating autophagy 
through phosphorylation of kinases ULK1/2 
and ATG13 [81-83]. The ULK complex also 
cross-talks with the beclin1 (or VSP34) com-
plex. mTORC1 can phosphorylate a member of 
this complex called AMBRA1, to reduce ubiqui-
tination of ULK1 by the VSP34 complex protein, 
TRAF6. Unusually, rather than destroy the pro-
tein, this ubiquitination actually increases its 
activity [84]. As AMPK reduces both mTOR sig-
naling, and increases ULK phosphorylation it 
increases autophagy in cellular stress, in oppo-
sition to the mTOR pathway [85]. 

Aside from these functions, mTORC1 is also 
partially involved in regulating other important 
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cellular processes related to metabolism, such 
as glycolysis via hypoxia inducible factor (HIF1α) 
induction [86-88], lipid metabolism [89], and 
de novo synthesis of pyrimidines [90]. 

mTORC2

mTORC2 regulates the activity of several pro-
teins belonging to the AGC kinase family and it 
can, in one sense, be thought of as ‘upstream’ 
of mTORC1 as it is one of many regulators of 
the AGC kinase, Akt. Akt has many downstream 
effectors of its own, increasing proliferation, 
cellular growth (e.g. its role in mTORC1 activa-
tion via TSC2), cell survival, angiogenesis and 
metabolic processes [91]. mTORC2 directly 
phosphorylates Akt on Ser473, which is re- 
quired for its maximal activation [92]. However 
mTORC2 is not the only activator of Akt, with 
Akt substrates such as FoxO1 being impair- 
ed by mTORC2 depletion, when others like 
GSK3β were not affected [33, 93]. 

mTORC2 also phosphorylates the AGC kinase 
SGK1, thereby contributing to the regulation  
of proliferation and apoptosis via FoxO3a [94], 
ion channels such as Na+ [95] and regulating 
differentiation in cell types such as TH1 and 
TH2 immune cells [96]. mTORC2 can affect cel-
lular shape, structure and morphology, specifi-
cally by altering the actin cytoskeleton, with 
part of this control, at least, down to mTORC2 
regulation of PKC, another member of the AGC 
kinases [31, 32, 97].

As well as associating with ribosomes [71], 
mTORC2 also associates with the endoplasmic 
reticulum (ER) sub-compartment called the 
mitochondria-associated ER (MAM). This sub 
compartment is a key part of calcium and lipid 
transfer, with mTORC2 deficiency directly lead-
ing to a disruption of these functions and MAM 
integrity [98]. 

mTOR and breast cancer

Looking at the multitude of cellular events 
mTOR complexes help regulate, it is of no sur-
prise that the activation of mTOR signaling is 
associated with cancer and is perceived as 
being oncogenic. The activation of mTOR com-
plexes will give tumors a vast growth advan-
tage, with an increased amount of protein syn-
thesis, as well increased inhibition of autopha-
gy. Thus whilst growing at an increased rate, 
these cells are also less likely to die. Research 

has generally shown that activated mTOR sig-
naling leads to an increase in tumor progres-
sion and often a decrease in patient survival 
[99, 100]. mTOR expression correlates for a 
worse prognosis in breast cancer [101, 102] 
with work by Walsh and Colleagues [103] show-
ing that phospho-mTOR was more common in 
triple negative breast cancers. Despite the fact 
that mTORC2 signaling can increase oncogenic 
signals via Akt and mTOR signaling, research 
has suggested that rictor expression, which is 
required for mTORC2 signaling, is actually lower 
in breast tumors compared to normal breast 
tissue [102]. This could suggest that mTORC1 
signaling is more oncogenic than mTORC2 sig-
naling or that rictor is required in very specific 
amounts for mTORC2 signaling; with too much 
or too little ultimately inhibiting the mTORC2 
arm. 

In terms of how the mTOR pathway is altered  
in cancer, it is found that the majority of al- 
terations and mutations lie upstream of mTOR 
itself and lead to an increased activation of 
mTOR signaling. Common in many cancers, are 
alterations to PI3Ks, which are key activators  
of mTOR via Akt and TSC1/2 and have been 
shown to cause over activation of mTOR signal-
ling [104]. Activating mutations in the PIK3CA 
gene (which encodes a subunit of PI3K) are 
common in breast cancer, with the mutations 
usually centered in kinase and helical domains 
[105]. Other common mutations upstream of 
mTOR occur in AKT, with altered or mutated 
AKT and loss of PTEN detected in breast can- 
cer [106]. Familial mutations in PTEN Cowden 
Syndrome also increases the risk of develop- 
ing sporadic cancers of the breast, thyroid and 
kidneys [107]. 

Mutations and alterations of core mTOR com-
ponents (involved in either of the two mTOR 
complexes) are by and large a lot rarer than 
upstream mutations, but have still been noted 
in cancers, within the last few years. With the 
availability of more powerful sequencing tech-
nology combined with large online databases 
containing sequencing data, many research 
groups have been able to identify mutations in 
mTOR itself [108-110]. These pieces of rese- 
arch have shown that mutations have occurred 
in a variety of cancer types and whilst these 
alterations occur along the length of mTOR 
(Figure 2), a high frequency have been found in 
domains such as the FAT and FATC domains. 
Since the latter forms part of the kinase do- 
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main, it is no surprise that many of the muta-
tions identified in this research resulted in 
either increased mTORC1 or 2 activity. Some 
mutations in MTOR also showed decreased 
binding to the inhibitor DEPTOR, possibly due to 
mutations in the FAT domain [108].

mTOR and ER

The activation of mTOR signaling in cancer cells 
is associated with resistance to multiple drug 
therapies, especially in breast cancer where 
this affect is well studied. Tamoxifen is a selec-
tive estrogen receptor modulator (SERM), bind-
ing to the nuclear ERα, to block it’s binding to 
estrogen and therefore block receptor activa-
tion. A majority of breast cancer patients are 
estrogen receptor positive and so often receive 
drugs like tamoxifen (if pre-menopausal), but 
resistance to them is a common issue [111]. 
Whilst there are multiple mechanisms behind 
this resistance, mTOR appears to have a major 
role, with the mTOR pathway phosphorylating 
ERα at Ser118, making it hyper sensitive to 
activation and less likely to bind tamoxifen 
[112]. Research has shown that in the long 
term, breast cancer cells may use the PI3K/
Akt/mTOR axis to escape dependency from ER 
signaling and thus increase their resistance to 
tamoxifen [113]. Inhibiting the mTOR pathway 
has been shown to also help re-sensitize cells 
to anti-cancerous effects of tamoxifen [114]. 

mTOR and HER

Also key in breast cancer are the relative ex- 
pression of ErbB/HER receptors. EGFR ap- 
pears to be relatively commonly expressed, 
with 17.1% of a study of 706 invasive ductal 
breast carcinomas, showing over-expression  
of EGFR [115]; expression of EGFR appears to 
correlate well with HER-2 over-expression, sug-
gesting a therapeutic benefit to inhibiting both 
types of receptor [116].

sion. Its status as a key biomarker comes from 
that fact that HER-2 expression correlates with 
a much poorer prognosis and a generally more 
aggressive cancer [117, 118]. mTOR signaling 
has been linked with resistance to HER-2 thera-
pies in breast cancer, such as with the antibody 
based drug trastuzumab [119], and the dual 
EGFR (HER-1) and HER-2 inhibitor lapatinib 
[120]. Activation of mTOR signaling in tumor 
cells after ErbB inhibition can arise as a result 
of mutations in the PI3K pathway and the use 
of other growth factor receptors like IGF-1R (in 
which HER-2-IGF-1R dimers can form), contrib-
uting to drug resistance [121, 122]. It is there-
fore of no surprise that in vivo studies have 
shown an increased effect when rapamycin is 
used with trastuzumab [123].

mTOR-targeted therapies

Rapalogues

Since its identification, over four decades ago, 
rapamycin has been studied as a therapy for  
a wide variety of diseases. With it being the  
first mTOR inhibitor to be discovered, work on 
rapamycin led to a new field devoted to eluci-
dating compounds that inhibited the mTOR 
pathway. The first, and currently most widely 
used, set of compounds, are rapamycin and its 
analogues that are more commonly known as 
‘rapalogues’. Rapamycin (structure shown in 
Figure 3), also known as sirolimus, is a macro-
cyclic lactone, isolated from the bacterium 
Streptomyces hygroscopicus initially noted for 
its strong anti-fungal effect [8]. It was later 
found to have strong immunosuppressive af- 
fects, blocking T-cell activation [3] and in 1999 
was originally approved for use as an immuno-
suppressant drug in the USA [124]; it is used  
in procedures such as kidney transplantation, 
to reduce rejection, risk of infections and also 
to lower the incidence of post-surgery cancer 
[125].

Figure 2. Common muta-
tion hotspots along mTOR. 
Information: [108].

Since HER family receptors 
can activate PI3K-mTOR sig-
naling, HER-2 expression is 
important in the over-activa-
tion of mTOR signaling in 
breast cancer. HER2 is am- 
plified in upwards of 15-20% 
of all breast cancers, which 
can result in a nearly 100-fold 
increase of protein expres-
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Due to its inhibitory effect on mTOR, and thus 
cellular growth, rapamycin was explored as  
an anti-cancer agent. It was shown to inhibit 
cellular proliferation and/or be effective in  
several types of cancer including pancreatic 
[126], colon [4], rhabdomycosarcoma [127] 
and breast [124]. However, rapamycin has on 
the whole not been taken forward for cancer 
therapy due to its poor pharmacokinetic prop-
erties, including its low solubility [128]. 

Rapamycin derivatives/rapalogues have since 
been developed to tackle these issues, open-
ing up new avenues for treatment for not  
only cancers but a variety of other conditions. 
These include everolimus (RAD-001), temsiroli-
mus (CCI-779), ridaforolimus (deforolimus, AB- 
23573) and zotarolimus (ABT-578). Details of 
these rapalogues can be found in Table 1. 

Rapalogue mechanism of action

Rapalogues all inhibit mTOR, using the same 
mechanism of action, which involves the in- 
tracellular receptor and immunophilin, FK506 
binding protein 12 kDa (FKBP12). FKBP12 
binds FK506, and mediates immunosuppres-
sive actions via its alteration of the phospha-
tase calcineurin, with FKBP12 able to regulate 
cellular levels of Ca2+ [147, 148]. 

FKBP12 was shown early on to bind rapamycin, 
and mediate its action through its binding to 

mTOR, causing an inhibition of cell cycle pro-
gression [2]. The FKBP12-rapamycin complex 
binds to mTOR at the FRB domain, acting th- 
rough allosteric inhibition and conformational 
changes in mTOR and mTORC1 [13, 149, 150], 
resulting in decreased interaction between 
mTOR and raptor [151] which could inhibit the 
phosphorylation and activation of the major 
mTORC1 downstream targets including S6K 
and 4E-BP1. However, further, more in depth 
research about events post-rapalogue treat-
ment has revealed a differentiation in the 
amount of inhibition actually seen on each 
mTORC1 substrate, with the levels of inhibition 
of 4E-BP1 phosphorylation compared to S6K 
varying greatly over time and between cell 
types [152, 153]. Interestingly, the level of 
auto-phosphorylation on mTOR in mTORC1 (but 
not mTORC2) on Ser2481 is also greatly re- 
duced upon rapamycin treatment [39]. 

Rapalogues were long thought to only inhi- 
bit only mTORC1 complexes and their down-
stream effectors, with evidence at the time 
supporting this theory [31]. However more in 
depth study of rapamycin’s effect on mTORC2 
has revealed that prolonged treatment does  
in fact inhibit mTORC2 as well as mTORC1, with 
rapamycin treatment directly affecting the as- 
sembly of mTORC2 components, including ric-
tor. Therefore rather than binding directly to 
mTORC2, like it does mTORC1, the FKBP12-ra- 
pamycin complex binds mTOR and then over 
time stops the formation of new mTORC2 com-
plexes [154-156]. 

At a cellular level, rapalogues show many 
effects useful for the treatment of cancer. Due 
to the inhibition of protein translation, growth 
of cells can be severely affected, limiting pro-
gression through the cell cycle, usually at the  
G1 phase, and ultimately inhibiting tumor 
growth [2, 157]. Rapalogues have shown this 
growth inhibitory effect in a wide variety of 
cells, with rapamycin inhibiting the growth of 
cancer cells including prostate [158], small cell 
lung [159] and rhabdomycosarcoma [127]. 
Acting through similar mechanisms, everolimus 
has been shown to inhibit the growth of can- 
cer cells including breast [160], acute lym- 
phoblastic leukemia (ALL) [161] and oral squa-
mous cell carcinoma (OSCC) [162]. 

Rapalogues are also able to induce autophagy 
in certain cancer types, including breast can- 
cer [163] and malignant gliomas [164] as well 

Figure 3. Structure of rapamycin (sirolimus). Rapa-
logues vary from the parent rapamycin in mostly on 
one small side group. This occurs as an O-substitu-
tion at carbon-40 on rapamycin, underlined on the 
primary structure [129, 130].



mTOR in breast cancer

390 Am J Cancer Res 2017;7(3):383-404

Table 1. Details, including clinical uses of the rapalogues; everolimus (RAD-001), temsirolimus (CCI-779), ridaforolimus (deforolimus, AB23573) 
and zotarolimus (ABT-578)

Rapalogue Side Chain (O-substitution 
on rapamycin at carbon 40) Description Clinical uses References

Everolimus (RAD-001) 2-hydroxyl-ethyl side chain.
Increased solubility over rapamycin, with 
bioavailability around 15% higher.
Administered orally

Approved for use in breast cancer, renal cell carcinoma and 
neuroendrocrine tumors of the pancreas, lungs or gut. Used for 
kidney transplants and tested in lung and heart transplants

[128, 131-137]

Temsirolimus (CCI-779) Dihydroxymethyl-propanoic acid side group.
Increased solubility over rapamycin.
Administered orally or IV

Approved for use in renal cell carcinoma and mantle cell  
lymphoma. Tested at Phase II and III levels in breast cancer

[129, 138-141]

Ridaforolimus (Deforolimus, AP23673) Phosphine-oxide side group. More soluble 
than rapamycin in water and organic solvents

Phase II and III testing against sarcomas [142, 143]

Zotarolimus (ABT-578) Tetrazole side ring replacing hydroxyl group Inhibits growth of coronary smooth muscle cells and is used to 
treat stenosis in drug eluting stents

[124, 144-146]
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as having an apoptotic effect on human den-
dritic cells [165]. Whilst this increase in autoph-
agy is not surprising due to mTORC1 control 
over autophagy initiation and ULK1/2 phos-
phorylation [81], it is not widely noted in cancer 
types, where cell cycle arrest and growth inhibi-
tion appear to be the primary cellular means by 
which rapalogues act. Everolimus, like rapamy-
cin, can also cause an increase in apoptosis 
within breast cancer and rhabdomycosarcoma 
cell cultures [166-168].

However, inhibiting mTOR signaling in this man-
ner has its drawbacks in terms of the desired 
molecular effect, highlighting possible issues 
when applying rapalogues in a clinical setting. 
Usually, negative feedbacks loops exist to per-
turb over-active mTOR signaling, with S6K inhib-
iting IRS-1 to reduce mTOR activation via insu-
lin/IGF-1 signalling [77, 169]. Thus, in rapalogue 
treatment, cells may actually be more sensitive 
to PI3K-mTOR activation via growth factor sig-
nals such as insulin [170]. The inhibition of 
mTORC1 (on a short term scale) seems to also 
favor the formation of mTORC2 complexes, 
shifting mTOR signaling burden from one arm to 
the other [171]. In line with this, and the fact 
that mTORC2 leads to increased Akt phosphor-
ylation at Ser473 [32], rapalogue treatment 
appears to lead to increased Akt activation. 
This not only further increases upstream sig-
nals activating the mTOR pathway but also 
increases the activation of various survival 
pathways associated with Akt activation [172]. 
Everolimus and other rapalogues, have been 
shown to abolish the negative feedback on 
IRS-1/insulin signaling, up-regulating and fur-
ther activating growth factor signaling via PI3K 
and Akt in both cancer cell cultures and patient 
samples [173, 174]. Patients with metastatic 
cancer have also shown up-regulation of other 
signaling pathways including MAPK signaling, 
when treated with everolimus [175].

Clinical applications of everolimus and rapa-
logues in breast cancer

Rapamycin

Many rapalogues have now made their way into 
clinical use, or are being explored for therapeu-
tic in breast cancer patients. Whilst it may  
be the ‘founding member’ of the rapalogues, 
rapamycin is not used on a large scale in can- 
cer therapeutics and is unlikely to have future 

impact as a sole agent. Whilst not yet approved 
for use in breast cancer, it has shown some 
small efficacy in the treatment of this disease 
when used as a combination therapy. Phase II 
trial data in HER-2 positive patients suggested 
adding rapamycin may benefit trastuzumab 
treatment [176] and that the combination of 
resveratrol with rapamycin may stop Akt feed-
back activation in breast cancer cells [177].

Temsirolimus

Temsirolimus has been approved for use in 
renal cell carcinomas since 2007 in the EU 
[140] and is mainly used as a first line treat-
ment for patients with poor-risk disease, with 
increased aggressiveness and decreased prog-
nosis. Phase III trial data has shown it improves 
median survival among this group [178]; how-
ever temsirolimus trials in breast cancer have  
produced inconclusive and ‘mild’ results at 
best. One phase II study found no objective 
response in the observed cohort, although the 
study size was small at only 31 patients [179] 
and a separate phase II trial, using a larger 
cohort, showed a very modest response, with 
only 9.2% patients showing partial response  
to the drug [138]. Phase III trials of this drug 
combined with the aromatase inhibitor letro-
zole, in the HORIZON trials in post-menopausal 
women, again showed disappointing results 
and a lack of improved patient survival [141]. 
Interestingly, Rangwala and colleagues [180] 
showed that combining a rapalogue like temsi-
rolimus with the autophagy inhibitor hydroxy-
chloroquine (HCQ), was well tolerated and 
showed anti-tumor activity in melanoma 
patients, suggesting this may be a valuable 
area of exploration for breast cancer combina-
tion therapy in the future. 

Ridaforolimus

Although not currently approved for clinical use 
in cancer treatment, ridaforolimus has been 
explored in a number of trials for various cancer 
types including breast cancer. A phase II trial 
with ridaforolimus combined with trastuzumab, 
in HER-2 positive, trastuzumab-refractory met-
astatic breast cancer patients, showed good 
anti-tumor activity. The rate of response was 
similar to that with patients treated with first 
line trastuzumab, suggesting that a rapalogue 
like ridaforolimus may help overcome resis-
tance to trastuzumab [181]. Phase II trials of 
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ridaforolimus in endometrial cancer, refractory 
hematological cancers and soft and bone sar-
comas has also shown some promising results 
in terms of anti-tumor activity, giving cause for 
possible further investigation [142, 182, 183]. 

Everolimus

In breast cancer, everolimus has shown many 
productive results, across a variety of clinical 
trials. As such, in 2012 everolimus (marketed 
as Afinitor) was approved for use in combina-
tion with the steroidal aromatase inhibitor ex- 
emestane in breast cancer patients with ad- 
vanced cancer that is hormone receptor posi-
tive, HER-2 negative (non-over-expressing), and 
whose prior treatment with a non-steroidal aro-
matase inhibitor (such as letrozole or anastra-
zole) had failed [132, 184, 185]. Key evidence 
for the use of everolimus in this subset of  
cancer patients came from the phase III BO- 
LERO-2 (breast cancer trials of oral everolimus) 
clinical trial. This trial looked at the effect of 
combining everolimus with exemestane, in a 
subset of patients, where the cancer was re- 
fractory to non-steroidal aromatase inhibitors 
(all patients had received prior treatment with 
either letrozole or anastrazole). The patient set 
included those who had already been treat- 
ed with one set of chemotherapy and/or hor-
monal therapy, and excluded patients who had 
already been treated with exemestane or other 
mTOR inhibitors. Patients treated with the com-
bination of everolimus plus exemestane had  
a statistically significant increase in progres-
sion free survival (PFS), compared to exemes-
tane and placebo treated patients; there was a 
PFS average of 2.8-4.1 months in the placebo 
arm compared 6.9-10.6 months in the everoli-
mus arm of the trial. In terms of toxicity, the 
combination treatment was also well tolerated, 
according to quality of life (QOL) end-points  
and ECOG status [186-188]. These results are 
positive compared to the rather flat results of 
the HORIZON trial; both used a rapalogue in 
conjunction with an aromatase inhibitor, how-
ever it is possible that the use of a steroidal 
aromatase inhibitor (exemestane) enhanced 
the effects of the rapalogue in a greater way 
compared to its non-steroidal counter-part 
(letrozole).

Rapalogues and drug-resistance

Since mTOR activation can often confer a resis-
tance to trastuzumab [119] it seems a viable 

option to use a rapalogue to increase patient 
sensitivity to this therapy once again. Phase II 
trial data validated this thinking, with results 
showing that patients on a regime of trastu-
zumab and paclitaxel (who had progressed 
whilst on trastuzumab treatment and were 
HER-2 positive) were showing increased PFS 
times and response rates to the therapy, with 
the weekly addition of everolimus [189]. How- 
ever results from the phase III BOLERO-1 trial  
in a similar area were not as positive. The trial 
included patients with HER-2 positive (over-
expressing) tumors with advanced disease  
who had not received chemotherapy (including 
trastuzumab) within the last 12 months. This 
time the addition of everolimus to trastuzumab 
and paclitaxel did not improve outcomes in  
a significant way although some small advan-
tage to this treatment was noted in women who 
were hormone/ER receptor negative [190].

The BOLERO-3 phase III trial also studied 
women with advanced HER-2 positive cancers 
who were trastuzumab resistant and had previ-
ously received taxane treatment. The addition 
of everolimus to a regime of trastuzumab and 
vinorelbine increased PFS significantly, albeit 
by a small amount, compared to the placebo, 
group from a median of 5.78 months to 7 
months. Again the sub-group of patients who 
were hormone receptor negative showed an 
increased efficacy of everolimus [191]. The 
data from the BOLERO-1 and 3 trials suggest 
that in HER-2 positive patients, hormone/ER 
receptor status may be key to everolimus effi-
cacy. Since mTOR signaling can directly alter  
ER signalling [112] and is a direct target of 
growth factor signaling like that of HER family 
receptors [42], it is perhaps no surprise that 
these multiple pathways connect in relation to 
therapy efficacy.

Considering the importance of selective estro-
gen receptor modulators (SERMs), the use of 
everolimus has also been explored in conjunc-
tion with tamoxifen. Phase II clinical trial data 
for this drug combination in post-menopausal 
advanced breast cancer patients who were 
HER-2 negative, hormone receptor positive and 
resistant to aromatase inhibitors, have been 
positive. Results suggested a significant incre- 
ase in time to progression and overall clinical 
benefit [192]. A small phase II study in triple-
negative breast cancer patients showed that 
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the combination of carboplatin and everolimus 
may have clinical benefit in this set of breast 
cancers [193]; however, the addition of everoli-
mus to a regime of paclitaxel and bevacizumab 
was not shown to significantly increase efficacy 
of this combination drug regime [194]. 

Resistance to rapalogues

Whilst it is clear that the rapalogues have wide 
potential in the clinic, as in the case of everoli-
mus use in breast cancer, they also are associ-
ated with key issues that may ultimately limit 
their application and range in terms of thera-
peutic use. Resistance to rapalogues (and a 
lack of efficacy to treatment) has been noted in 
many settings and can been caused by a host 
of factors. The inhibition of mTOR with rapa-
logues can alter feedback pathways that exist 
within PI3K-mTOR signaling as well as activate 
Akt signaling by shifting the burden of signal- 
ing towards mTORC2 [32, 172]. This reduces 
the anti-cancer effects that rapalogues have 
[195], and inhibition of Akt can directly re-sen-
sitize breast and colon cancer cells to rapa-
logue treatment, partially via increased inhibi-
tion of PRAS40 phosphorylation, increasing its 
inhibitory effect on mTORC1 [196]. This same 
feedback effect on Akt has been noted in lung 
cancer cells where PI3K inhibition, again re-
sensitized the cells to rapamycin treatment 
[172]. Since mTOR inhibition can activate apop-
tosis, a lack of functional apoptotic pathways 
can reduce their effectiveness as well [195]. 
Unsurprisingly, breast cancer cells with a high-
er reliance/activation of mTORC1 signaling, as 
shown by over-expression of phosphorylated 
S6K, show increased inhibition by rapalogues 
[197].

Many other signaling pathways and processes 
can affect and induce rapalogue resistance. 
For example MCF-7 breast cancer cells that 
have developed tamoxifen resistance are in- 
trinsically resistant to everolimus [198]. Re- 
search suggests that expression of epithelial-
mesenchymal transition (EMT) markers such 
as snail increase resistance to rapamycin, whi- 
lst expression of pre-EMT markers like E-cad- 
herin increase breast cancer cell sensitivity to 
rapamycin, in vitro [199]. In breast cells (includ-
ing the MCF-7 cell line) that were induced to  
be everolimus resistant, MYC was suggested to 
play a role in the resistance process, as an up-
regulation of MYC was seen in the resistant 

lines and depletion of MYC re-sensitized the 
cells to everolimus once more [200]. MCF-7 
cells treated with rapamycin also showed an 
up-regulation of transglutaminase 2 (TGM2), 
seemingly as a compensatory mechanism, with 
TGM2 inhibition re-sensitizing cells to rapamy-
cin [201]. Work with breast, colorectal and 
renal cancer cells also implicates Met to be 
involved a mechanism of rapalogue resistance, 
with increased Met activation conferring resis-
tance [202]. Mutations could also induce rapa-
logue resistance breast cell lines; mutations in 
mTOR’s FRB domain (induced after long term 
rapamycin treatment) resulted in insensitivity 
to rapamycin, even over a period of weeks. 
Cells with this type of mutation are however still 
sensitive to ATP-competitive inhibitors of mTOR 
[203]. 

Alternatives to rapalogues

Inhibiting mTOR via FKBP12 is by no means the 
only way to achieve the overall effect of block-
ing mTOR activity. In fact there are now multi-
ple, well explored, ways to block mTOR signal-
ing, many of which circumnavigate the issues 
that arise with rapalogue use. Whilst these still 
present with their own issues, such as side 
effects, they have shown promising efficacy in 
the field of cancer treatment and early clinical 
trial stages and it is very possible that they will 
make their way into the clinical setting [204]. 

Unlike rapalogues that allosterically inhibit 
mTOR, ATP-competitive inhibitors block ATP 
binding and reduce the activity of both mTOR 
complexes. Due to the related sequence nature 
of mTOR (and other PIKK family proteins) and 
PI3K, many of the ATP competitive inhibitors 
also inhibit PI3K as well as mTOR. These inhi- 
bitors therefore reduce signaling across the 
entire PI3K-Akt-mTOR axis and reduce the pro- 
blems of feedback activation to PI3K signal- 
ing or mTORC2 activation [205]. BEZ235 and 
PF-04691502 are both dual PI3K-mTOR inhi- 
bitor of this class and have been studied for 
their anti-cancer efficacy in breast cancer. Both 
shown an anti-proliferative effect on cancer 
cells (and some tumors) and inhibition of PI3K-
mTOR signalling [206, 207]. However, since 
PI3K signaling controls such a broad range of 
downstream pathways and processes vital for 
a cell, inhibiting both PI3K and mTOR may have 
serious side effects that could limit the clini- 
cal application of such inhibitors. For example, 
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in a phase II study of BEZ235 in pancreatic 
neuroendocrine patients who were everolimus 
resistant, the drug was poorly tolerated, limit-
ing the trial progression [208].

More specific ATP-completive inhibitors, that 
only target mTOR, and thus block mTORC1 and 
2 are becoming more favorable. The drugs 
MLN0128, CC-223 and ADZ2014 have all sh- 
own promising results in terms of their anti-
cancerous effects in breast cancer. AZD2014 
and MLN0128 both show good anti-prolifera-
tive and anti-tumor effect in vitro and in vivo 
reducing signaling from mTORC1 and mTORC2, 
with MLN0128 also able to inhibit the growth  
of rapamycin-resistant breast cancer cells 
[209-211]. A phase I study of CC-223 has been 
relatively promising; it is well tolerated, with a 
partial response noted in a breast cancer pa- 
tient, and disease stability in multiple types of 
cancer, as well as good inhibition of mTORC1 
and 2 in patients [209]. 

Despite the issues of inhibiting PI3K, pan-PI3K 
inhibitors, such as the buparlisib (BKM120) 
have shown early promise in tackling breast 
cancers. Buparlisib widely inhibits PI3Ks but 
not does not directly inhibit mTOR; phase I data 
with buparlisib in combination with either 
trastuzumab [212] or fulvestrant [213] shows 
the drug to be well tolerated in breast cancer 
patients with some signs of disease manage-
ment. PI3K inhibition may also be a viable  
way of avoiding resistance to rapalogues with 
buparlisib use, in combination with everolimus 
(or trastuzumab), reducing the occurrence of 
resistance to these drugs whilst also showing 
good growth inhibition, in vivo [214]. 

Inhibiting Akt directly is another alternative 
therapeutic option to rapalogues that has sh- 
own potential at a research stage and early 
clinical levels. In terms of breast cancer thera-
peutics, MK-2206, an allosteric inhibitor of Akt 
is perhaps the most promising of the selective 
Akt inhibitors. Multiple phase I trials have sug-
gested this may hold key therapeutic benefit 
and it has been tested in a similar settings to 
the BOLERO trails. MK-2206 in combination 
with paclitaxel and trastuzumab, (similar to the 
BOLERO-1 trial), was well tolerated, with 63%  
of patients showing a clinical response [215]. 
Likewise, MK-2206 in combination with anas-
trazole was also well tolerated and 42% of 
patients showed clinical benefit. Due to these 

successes, phase II trials are underway with 
MK-2206 [216]. Preclinical evidence for the 
efficacy of the ATP competitive inhibitor, AZD- 
5363, is also positive, with breast cancers  
cells and xenografts showing some of the best 
responses to this drug of all malignancies test-
ed [217].
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