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Abstract: Breast cancer is the most common and fatal type of cancer in women worldwide due to the metastatic pro-
cess and resistance to treatment. Despite advances in molecular knowledge, little is known regarding resistance to 
chemotherapy. One highlighted aspect is the DNA damage response (DDR) pathway that is activated upon genotoxic 
damage, controlling the cell cycle arrest or DNA repair activation. Recently, studies have showed that cancer stem 
cells (CSCs) could promote chemoresistance through DDR pathway. Furthermore, it is known that the epithelial-
mesenchymal transition (EMT) can generate cells with CSCs characteristics and therefore regulate the chemore-
sistance process. The exosomes are microvesicles filled with RNAs, proteins and microRNAs (miRNAs) that can be 
released by many cell types, including tumor cells and CSCs. The exosomes content may be cell-to-cell transferable 
and it could control a wide range of pathways during tumor development and metastasis. A big challenge for modern 
medicine is to determine the reasons why patients do not respond to chemotherapy treatments and also guide the 
most appropriate therapy for each one. Considering that the CSCs are able to stimulate the formation of a more 
aggressive tumor phenotype with migration and metastasis ability, resistance to treatment and disease recurrence, 
as well as few studies capable to determine clearly the interaction of breast CSCs with its microenvironment, the 
present review summarize the possibility that exosomes-mediate miRNAs transfer and regulate chemoresistance in 
breast tumor cells and CSCs, to clarify the complexity of breast cancer progression and therapy.
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Introduction

Breast cancer is the most common type of can-
cer in women worldwide, comprising 23% of all 
cancer cases and causing 14% of cancer-relat-
ed deaths [1]. Ductal and lobular types corre-
spond to more than 90% of breast cancer 
cases. Breast cancer is a heterogeneous dis-
ease in which multiple cellular pathways are 
dysregulated leading to marked differences in 
prognosis, pattern of metastasis, treatment 
sensitivity and patient survival [2-4]. Gene 
expression profiling approaches have been 
defined the intrinsic subtypes [5] of the  
disease. However, multiparameter molecular  
tests such as differential expression of PAM50 
[6] or MammaPrint/Blueprint [7] are not world-
wide available.

In clinical practice, immunohistochemistry 
(IHC) tests for estrogen and progesterone hor-

mone receptors (ER and PR, respectively), 
human epidermal growth factor receptor 2 
(Her2), and Ki-67 protein expression are used 
to classify breast carcinoma into different 
groups in order to allocate the patient to indi-
vidual therapies [8]. Systemic therapies based 
in hormone, cytotoxic agents and target anti-
bodies are initially effective in controlling tu- 
mor growth. In contrast, several studies have 
demonstrated that a significant proportion of 
patients are inherently resistant to first-line 
therapeutic agents or develop resistance dur-
ing the treatment, and thus exhibited tumor 
recurrence within the first year of diagnosis [9]. 

More recently, it has been observed that exo-
somes, microvesicles filled with RNAs, proteins 
and microRNAs (miRNAs), can be released by 
tumor cells and cancer stem cells (CSCs) and 
the released content could be able to control 
many different pathways during tumor develop-
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ment and metastatic process [10, 11]. This 
review will summarize and discuss the possibil-
ity that exosomes-mediate miRNAs transfer 
and regulate chemoresistance of breast tumor 
cells and CSCs.

Breast cancer systemic therapy and molecular 
mechanism of chemoresistance

The decision on which systemic treatment 
should be prescribed is based on the predicted 
sensitivity to particular treatment method, ben-
efit from their use, and individual risk of relapse. 
The adjuvant or neoadjuvant chemotherapies 
are based on sequential regimens of anthracy-
clines and taxanes that attach cancer cells 
through deoxyribonuclease and microtubule 
inhibition, respectively [12, 13]. Hormone ther-
apy as tamoxifen or aromatase inhibitors are 
indicated for hormone receptor-positive breast 
cancer women [14-16]. In the last few years, 
mTOR and CDK inhibitors emerged as a treat-
ment of advanced, hormone-therapy resistant 
luminal breast cancer [17, 18]. Targeted thera-
pies, such as the monoclonal antibody trastu-
zumab, combined with chemotherapy are used 
in HER2-positive breast cancers and the drug 
combination have an undeniable beneficial 
impact on patients overall survival [19, 20]. 

Multidrug resistance is a phenotype exhibited 
by malignant cells characterized by resistance 
to multiple cytotoxic drugs involving alteration 
in both drug metabolism and transporter in 
cancer cells as well as different molecular 
mechanisms of action [21]. The mechanisms of 
tumor cells resistance can escape the cytotoxic 
effect induced by chemotherapy in two possi-
ble ways: (1) intrinsic, in which the patient does 
not respond to treatment because tumor cells 
are able to escape from pathways in which 
tumor cells are unable to uptake the drug  
and (2) acquired, in which initially the patient 
responds to the treatment but then becomes 
resistant. In both cases the treatment is inef-
fective leading to a poor prognosis [22]. 

It has been shown that the overexpression of 
ATP-binding cassette (ABC) efflux transporters 
in tumor cancer cells pump out drug molecules, 
decreasing their intracellular concentration, 
while increasing the healthy cells’ drug expo-
sure [23]. The molecular pathways associated 
with drug resistance include inhibition of both 
DNA repair and deregulation of survival/apop-
totic pathways [24]. Furthermore, individual 

predictive factors such as the distinction into 
ER+ versus ER- cancers are also related to drug 
sensitivity/resistance [25]. 

DNA repair proteins play a key role in the main-
tenance of a healthy genome and when inacti-
vated can impair the capacity of cancer cells  
to repair DNA cross-links caused by chemo- 
therapy drugs [26]. DNA repair gene mutations 
have been associated with the development  
of breast cancer. It is believed that mutations 
may trigger both tumorigenesis and the influ-
ence of the therapeutic response [27]. BRCA1 
encodes a DNA repair protein and plays a key 
role in the development of hereditary breast 
cancer. This protein interacts with the RNA 
polymerase II complex and histone deacety- 
lase enzyme, acting in transcription and DNA 
double strand break (DSBs) pathway [28]. 
BRCA2 protein is also involved in DSBs  
through interaction with RAD51 to start the 
homologous recombination process [29]. The 
risk of a BRCA1/BRCA2 mutation carrier  
develop breast cancer is estimated at 60-80%. 
In addition, there are other DNA repair genes 
associated with breast cancer development, 
including mismatch repair genes as MLH1, 
MSH2, PMSI, MSH6, PMS2 and DNA damage 
sensors as ATM, ATR, CHK1, CHK2 and also 
TP53 [27, 30, 31]. 

Some authors have postulated that TP53 muta-
tions with consequent repression of other 
genes involved in the TP53 pathway are highly 
associated with chemoresistance [32]. In this 
regard, nonsense mutations in the CHK2 gene, 
an upstream TP53 activator, and ATM, a key  
activator of TP53 and CHK2 genes [33] may 
cause resistance against DNA damage drugs  
in vivo [34].

The DNA damage response (DDR) pathway is 
activated in the presence of genotoxic DNA 
damages. The DNA damage sensors send  
two signals, the first activates the checkpoint 
pathway that stops the cell cycle in both G1  
and G2; the second signal leads to activation  
of DNA repair [35]. Some evidence has indicat-
ed that CSCs can promote chemoresistance 
[36] partly through DDR [37, 38]. Furthermore, 
it is known that the epithelial-mesenchymal 
transition (EMT) can generate cells with stem 
cell features and regulate chemoresistance 
process associated to CSCs. Indeed, a study 
conducted by Zhang et al [39] showed that  
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EMT regulators promote DDR and therapy  
resistance through a process involving ATM 
and CHK1. 

Cancer stem cells are associated with chemo- 
resistance

Despite genetic-molecular knowledge advanc-
es of breast cancer, this cancer remains the 
leading cause of cancer death among women 
worldwide, mainly due to the metastatic pro-
cess and treatment resistance. It is suggested 
that a subpopulation of cells present in the 
tumor is resistant to chemotherapy and it could 
be able to initiate tumor growth and drive  
the disease progression [40, 41]. These cells  
have stem cell characteristics, and were first 
observed in breast tumors in 2003 [42]. There 
are two hypotheses to explain the origin of 
CSCs. The first one proposes that these cells 
result from the dysregulation of normal stem 
cells, resulting in tumor cells with self-renew 
and differentiation ability, mainly due to a high 
mutation rate and oncogenic transformation 
resulting from its long lifespan. The second 
hypothesis is that the CSCs develop from the 
EMT and are more susceptible to neoplasic 
transformation [41]. 

Several cellular pathways are responsible for 
regulating and maintaining the breast CSCs 
characteristics such as NOTCH, HEDGEHOG 
and WNT [38]. In addition, there are important 
transcription factors in this process, as factor 
nuclear kappa B (NFκB) and SRY-Box 9 (SOX9). 
It has been demonstrated that SOX9 plays a 
key role in EMT induction, and its induction is 
essential to keep breast stem state [43]. 
Recently it was demonstrated that high levels 
of SOX9 are associated with estrogen receptor 
(ER)-negative breast cancers, and also with a 
lower survival rate [44, 45].

The breast CSCs are identified by the expres-
sion of specific surface cell markers (CD44+/
CD24-), the ability to grow in non-adherent con-
ditions and the ability to self-renew [46]. It has 
been suggested that tumor cell population is 
composed of around 1% of CSCs, and this is 
sufficient to generate a phenotypically more 
aggressive tumor. In this sense, Ginestier and 
Wicha [47] showed that only 20 CSCs with 
CD44+/CD24-/ALDH+ profile were able to form 
tumors in vivo. 

An association between treatment resistance 
and breast CSCs has also been suggested, 
since there is a high number of CD44+/CD24- 
cells in residual tumor post chemotherapy  
[48]. This fact might be explained by CSCs  
quiescent characteristic, which contrast with 
chemotherapy drugs action that target cells  
in fast cell division. Moreover, it has been 
reported that CSCs have high levels of anti-
apoptotic proteins such as BCL-2 and Survivin 
as proteins involved in efflux pumping mecha-
nisms that reduce the cellular ability to retain 
the drug [49]. Accordingly, chemotherapy  
would not affect the CSCs, thus exerting se- 
lective pressure in these cells, promoting  
clinical resistance and increasing tumor aggres-
siveness [41]. Therefore, to elucidate the 
molecular mechanism in which the CSCs can 
survive to therapy is fundamental to identify 
new therapeutic targets most suitable for each 
breast cancer type. 

In addition, CSCs are associated with high cell 
plasticity, which is necessary for self-renewal 
and differentiation. It has been proposed that 
the cell plasticity is maintained by epigenetic 
changes including DNA methylation, histone 
modifications and non-coding RNAs [50]. So, 
the disruption of epigenetic changes can signifi-
cantly contribute to tumor development, and 
may control the CSCs plasticity [51]. The induc-
tion of some epigenetic modifiers, such as 
BMI1 and EZH2, has been associated with 
induction of plasticity within breast CSCs [52]. 
Moreover, there is a growing evidences sup-
porting the role of miRNAs in the maintenance 
of CSCs [53].  

miRNAs promote breast cancer chemoresis- 
tance

miRNAs are a class of small noncoding RNA 
that contain about 20 nucleotides in length and 
important as post transcriptional regulators 
once it has been demonstrated that they can 
regulate up to 60% of all coding genes. The 
miRNAs negatively regulate gene expression 
through their binding capacity with the 3’ 
untranslated region (3’UTR) of the mRNA tar-
get, which consequently lead to a reduction in 
the protein translation [54]. miRNAs act as reg-
ulators in a broad biological process, and are 
dysregulated in almost all cancer types, includ-
ing breast cancer. 

A growing number of studies has been high-
lighted the relevance of miRNAs as drug-resis-
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tance mediators, and consequently as a novel 
strategy for therapeutic intervention [55, 56]. 
In breast cancer, some miRNAs have been 
identified as drug resistance regulators (doxo-
rubicin, mitoxantrone and tamoxifen). As an 
example, the overexpression of miR-21 can 
cause trastuzumab resistance by suppressing 
its target gene, PTEN, during long drug expo-
sure period [57]. Additionally, Bockhorn et al. 
[58] reported that miR-30c suppresses IL-11 
expression and inhibit paclitaxel and doxorubi-
cin resistance promoting EMT phenotype. 

The chemotherapeutic failure observed in a 
wide range of anticancer agents, including 
anthracycline antibiotics, plant alkaloids, tax-
anes, and platinum-based drugs, is often attrib-
uted to the P-glycoprotein (P-gp) protein overex-
pression [59]. Kovalchuk et al [60] showed that 
P-gp-mediated resistance is associated with a 
low levels of miR-451 expression, which cannot 
target P-gp, increasing its expression in do- 
xorubicin resistant MCF-7 cells. Furthermore, 
there is evidence showing miR-489 as a puta-
tive regulator of MRP2 which down-regulation 
is associated with resistance to cisplatin and 
doxorubicin [56]. 

The effect of cytotoxic drugs such as doxorubi-
cin, paclitaxel and cisplatin occurs through DNA 
damage. Several distinct cellular pathways are 
activated in response to genotoxic damage, 
including the cell cycle arrest and apoptosis. 
The balance between pro- and anti-apoptotic 
programs can also be regulated by miRNAs 
allowing that normal cells are shifted toward in 
cancerous cells. In this sense, Shen et al [61] 
found an ectopic expression of miR-155 and a 
consequent cell survival and resistance to 
tamoxifen induction in both in vitro and in vivo. 
They also found that miR-155 inhibition leads 
to apoptosis and enhance tamoxifen sensitivi-
ty. In a complementary way, van Jaarsveld et al 
[24] analyzed the response of 725 human miR-
NAs correlated to DNA damage induced by high 
dose of cisplatin and irradiation. They found 
that 121 miRNAs were differentially expressed 
in breast tumors compared to healthy tissue 
and the authors were also able to validate that 
miR-93, miR-183, let-7a, miR-141, miR-23b, 
miR-369-3p, miR-296-5p, miR-193a-3p and 
miR-34b were, in fact, deregulated in breast 
cancer. 

The acquisition of chemoresistance involves 
multiple interacting factors and to better under-
stand this process, He et al [62] used adria- 
mycin and paclitaxel resistant MCF-7 cells  
to identify dysregulated targets thought RNA 
sequencing and the transcriptome profiles of 
coding mRNAs and non-coding small RNAs. 
They found that chemoresistant cells have  
similar changes in genes and miRNAs ex- 
pression compared to chemosensitive cells. 
Additionally, it was also observed a good prog-
nostic in triple-negative breast cancer patients 
receiving anthracycline-taxane-based neoadju-
vant chemotherapy. 

In the last years, miRNAs have also been indi-
cated to act on CSCs, which are resistant to 
many conventional cancer therapies. Some 
studies have demonstrated the role of miRNAs 
in determining breast CSCs phenotype [63-65]. 
For instance, the miRNA let-7 has an important 
role in self-renewal and the undifferentiated 
state maintaining of breast CSCs [66], while 
miR-200 inhibits BMI1 expression, playing a 
fundamental role in EMT and CSCs regulation. 
In breast cancer patients, miR-200 is repressed, 
which leads to BMI1 activation and EMT pro-
cess deregulation [63]. Another study showed 

Table 1. List of microRNAs associated with 
drug resistance in breast cancer
miRNA Target genes References
miR-451 ABCB1 [60]
miR-326 ABCC1 [92]
miR-487a ABCG2 [93]
miR-221/222 p27kip1 [94]
miR-30c TWF1 and IL-11 [94]
miR-31 PKCepsilon [95]
miR-3646 GSK-3β [96]
miR-224-3p FUT4 [97]
miR-193b MCL-1 [98]
miR-21 PTEN and PDCD4 [99]
miR217 PTEN [100]
miR133a UCP-2 [101]
miR-218 Survivin [102]
miR-125b Mcl-1/Sema4C [103, 104]
miR-141 EIF4E [105]
miR542-3p AKT [104]
miR-873 CDK3 [106]
miR-320a TRPC5 and NFATC3 [107]
miR-149 NDST1 [108]
miR-129-3p CP110 [109]



microRNAs transfer in breast cancer chemoresistance

2133 Am J Cancer Res 2016;6(10):2129-2139

that miR-140 is dysregulated in breast tumor 
cells and contributes to CSCs formation, by tar-
geting SOX9 and ALDH1 [67]. 

Therefore, miRNAs are proposed as potential 
novel biomarkers as well as therapeutic targets 
in new anti-cancer strategies based on CSCs 
mechanisms. To expand this idea, a very recent 
study employed next generation sequencing in 
order to compare the miRNA profiles of CSCs 
cells against parental cells. It was observed 
that several miRNAs (miR-4492, miR-4532, 
miR-381, miR-4508, miR-4448, miR-1296, 
and miR-365a) have strong association with 
breast cancer chemoresistance and self-
renewal capability [68]. These miRNAs were 
responsible for tumor growth, migration, and 
invasion, oncogenic properties, and progres-
sion [69-71]. This finding suggests that the phe-
notypic behavior of breast CSCs may be regu-
lated by miRNAs (Table 1). 

Exososomes transmit chemoresistance to 
breast cancer cells

The interaction with local microenvironment is 
an important factor in breast cancer therapy. 
The communication of tumor cells with their 
microenvironment plays a key role in the devel-
opment and progression of cancer, since these 
cells can access the oxygen and nutrients to 
support tumor growth. Furthermore, the tumor 
microenvironment composed by exosomes 
may enable the communication of a tumor cell 
with the neighboring cell, and thus promote 
invasion and migration [72]. 

Exosomes are small, lipid bilayer membrane 
vesicles of endocytic origin about 30-100 nm in 
diameter [73]. These microvesicles may be 
released by various cell types, including tumor 
cells, erythrocytes, lymphocytes, platelets, 
dendritic cells, adipocytes, and CSCs [74, 75]. 
The exosomes contains RNAs, miRNAs and pro-
teins, which can be transferred from one cell  
to another [76]. This molecular transfer is 
extremely important, since it acts as a regula-
tor of diverse cellular processes, helping us to 
understand the complexity of tumor progres-
sion and its therapy. Indeed, several studies 
have indicated that exosomes play important 
role in tumorigenesis, growth cell, progression, 
metastasis, and drug resistance [77-79]. The 
exosomal contents may vary according patho-
logical conditions and original cell type. To date, 

4563 proteins, 1639 mRNAs, and 764 miRNAs 
have been identified in exosomes from differ-
ent species and tissues by independent exami-
nations [77]. 

Although the mechanism by which the exo-
somes transfers RNA, miRNA and proteins is 
not completely understood, it has been sug-
gested that it occurs by the plasmatic mem-
brane fusion probably through acidic microenvi-
ronment [80]. Since these molecules can be 
found in body fluids, they can also be used as 
potential biomarkers for certain breast cancer 
subtypes and thereby drive the treatment 
response. For instance, saliva is used as a non-
invasive method to detect cancers at an early 
stage, including breast [81]. Exosomes derived 
from breast cancer can interact with salivary 
gland cells and lead to secretion of salivary  
biomarkers, thus, the monitoring the miRNA, 
mRNA and protein expressions of salivary bio-
markers among persons at high risk of breast 
cancer may serve as a promising tool for breast 
cancer detection. 

Emerging evidence indicates that CSCs may 
contribute to breast cancer drug-resistance. 
Interestingly, the exosomes released from 
CSCs could “carry” this chemoresistance to 
tumor cells. Similarly, the exosomes released 
by tumor cells could increase the CSCs forma-
tion and contribute to the aggressiveness of 
the disease [82]. Some researchers have 
recently demonstrated that exosomes may 
contribute to tumor development by acting as a 
modulator of the balance between CSCs and 
parental cells [83, 84]. 

Specific cells-derived exosomes can transfer 
multi-drug resistance-associated proteins and 
miRNAs to target cells [85] and through drug 
packaging and exportation [86]. Moreover, exo-
somes may counteract the outcome of anti-
body drugs by modulating their binding to tumor 
cells [87]. For instance, the exosomes release 
from HER2-overexpressing breast cancer cells 
can bind to HER2 antibody trastuzumab to 
inhibit its activity [88]. In an in vitro study, Lv et 
al [89] demonstrated that docetaxel resistance 
could be acquired by delivery of P-gp via exo-
somes. In a complementary way, others studies 
have showed that drug-resistant breast cancer 
cells can deliver miRNAs to sensitive ones by 
releasing exosomes [10, 90]. Indeed, the deliv-
ery of miR-222 via exosomes was shown as a 
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potential mechanism of adriamycin resistance 
in breast cancer cells [91]. 

Conclusion and future perspectives

Chemotherapeutic resistance, either intrinsic 
or acquired, results in poor prognosis in cancer 
patients. Identifying the individual causes 
underlying chemoresistance might guide a 
more appropriate therapy for each patient. 
Fortunately, the genetic content present in cir-
culating blood can provide clues and help to 
change this scenario. Further studies evaluat-
ing the mechanisms of miRNAs transfer that 
regulate chemoresistance among tumor cells 
and CSCs, is indispensable during chemothera-
py. This new knowledge might prevent chemo-
resistance and provide the key target for devel-
opment of innovative therapeutic strategies.

It has been shown that CSCs have higher migra-
tion ability, metastasis, treatment resistance 
and disease recurrence. In the last years, miR-
NAs have been associated with CSCs mainte-
nance, which might lead to drug-resistance to 
the most conventional cancer therapies. 
Therefore, miRNAs are proposed to be poten-
tial novel biomarkers, as well as therapeutic 
targets in new anti-cancer strategies. Some 
miRNAs expressed in CSCs are responsible for 
tumor growth, migration, invasion and treat-
ment response, suggesting that the phenotypic 
behavior of breast CSCs may be regulated  
by such miRNAs. In this context, the miRNAs 
transfer from CSCs to other cells play important 
role in tumorigenesis, and drug resistance. This 
process can be mediated by exosomes, found 
in body fluids, and can be used as biomarkers 
for certain breast cancer subtypes and thereby 
drive the treatment response. Thus, monitoring 
these biomarkers among high-risk breast can-
cer patients might serve as a promising tool for 
breast cancer drug resistance determination. 
However, so far, there is a big barrier between 
current knowledge of a full drug sensitivity pre-
diction. A reasonable approach is to consider 
the individual determinants that govern chemo-
resistance to roll back the cancer recurrence 
and increase the patient lifespan.
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