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Figure 3. Knockdown of CD133 in CD133+ HCT116 colon cancer cells does not affect cell growth and ErbB drug 
resistance. (A) Flow cytometry analysis revealed that sorted CD133+ cells transfected with a non-targeting control 
siRNA retain high levels of CD133 (left panel), whereas a CD133-targeting siRNA causes complete knockdown of 
CD133 (right panel). (B) Growth of the sorted CD133+ cell population transfected either with non-targeting con-
trol siRNA (co-siRNA) or with CD133 siRNA was determined by BrdU colorimetric incorporation assay. (C) Sorted 
CD133+ cells transfected with non-targeting control siRNA (co-siRNA) or with CD133 siRNA were incubated for 72 
hours with the indicated concentrations of the irreversible ErbB inhibitors pelitinib, canertinib or afatinib and then 
subjected to an MTT assay. In vehicle control (0.1% DMSO), optical density, which is proportional to cell number, 
has been arbitrarily set at 1 and values from treated cultures have been related to control and are given as ‘fold 
change’. Means ± SD, n = 3.
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growth of HCT116 cells. Interestingly, CD133- 
cells were found to be more sensitive to growth 
inhibition by irreversible blockers than CD133+ 
and unfractionated HCT116 cells. Thus, it was 
tempting to speculate that CD133 is associat-
ed with resistance against irreversible ErbB 
drugs. Unexpectedly, however, genetic knock-
down of CD133 failed to reestablish sensitivity 
in CD133+ cells. This data suggests that yet 
unidentified accessory factors that have been 
co-selected during enrichment of CD133+ cells 
may confer ErbB drug resistance. Accordingly, 
we observed that CD133+ cells invariably over-
express CD26, which has recently been pro-
posed as a marker for metastatic and drug-
resistant colorectal cancer cells [41]. 

Colon cancer stem cells may reside within the 
CD133+ cell population [18-20]. In agreement 
with previous data we demonstrate that expres-
sion of CD133 (prominin-1) is associated with a 
long-term growth advantage of HCT116 cells 
relative to cells lacking this transmembrane gly-
coprotein [27-30]. In contrast, in short-term bio-
assays we were unable to define any gain in 
growth and survival of CD133+ versus CD133- 
cells. Both cell subsets invariably express 
hyperactivated mutant KRAS (38G > A) and are 
characterized by an almost identical repertoire 
of membrane proteins. Consequently, we 
hypothesized that small modifications in multi-
ple gene sets and pathways may cause subtle 
functional differences in CD133+ cells that 

orchestrate to produce a 
robust long-term growth 
advantage in these cells. 
Accordingly, gene array 
analyses revealed several 
pathways related to cell 
growth and motility being 
upregulated in CD133+ 
HCT116 cells relative to 
CD133- cells. In contrast, 
no major differences in 
expression of drug resis-
tance genes were found. 
Moreover, major drug tar-
gets including the EGFR/
ErbB family (EGFR or ErbB1, 
ErbB2, ErbB3 and ErbB4) 
were expressed indepen-
dently of CD133. Here we 
examined the anti-cancer 
efficacy of various revers-
ible and irreversible ErbB 
blockers in cultures of 
HCT116 cells. While the 
reversible drugs erlotinib, 
gefitinib, lapatinib, and 
BMS599626 were not 
effective, irreversible ErbB 
blockers such as pelitinib, 
canertinib and afatinib 
dose-dependently reduced 

Figure 4. Knockdown of CD26 in CD133+ HCT116 colon cancer cells does not affect cell growth and ErbB drug 
resistance. (A) Flow cytometry analysis revealed that introduction of a non-targeting control shRNA into CD133+ 
cells does not lower the expression of CD26 (left panel), whereas a CD26-targeting shRNA causes strong downregu-
lation of CD26 (right panel). (B) Sorted CD133+ cells transfected with non-targeting control shRNA (co-shRNA) or 
with CD26 shRNA were incubated for 72 hours with the indicated concentrations of the irreversible ErbB inhibitors 
pelitinib, canertinib or afatinib and then subjected to an MTT assay. In vehicle control (0.1% DMSO), optical density, 
which is proportional to cell number, has been arbitrarily set at 1 and values from treated cultures have been re-
lated to control and are given as ‘fold change’. Means ± SD, n = 3.

Figure 5. Effects of a 24-hours exposure of bulk HCT116 colon cancer cells 
(Mix) and of sorted CD133+ or CD133- cells to the irreversible ErbB inhibitors 
pelitinib, canertinib, or afatinib on the expression of phosphorylated (p) and to-
tal forms of EGFR, ErbB2, AKT, S6, and ERK1,2 as determined by Western blot 
analysis. Note that ErbB inhibitors lower pERK1/2 levels specifically in ErbB 
drug sensitive CD133- cells, but not in bulk or in CD133+ cells.
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Unfortunately, however, knock-down of CD26 in 
CD133+ cells also failed to restore drug sensi-
tivity arguing for yet other mechanisms of resis-
tance. Moreover, phosphorylation of AKT and 
S6 was found to persist in all drug-treated 
HCT116 cell populations irrespective of CD133 
expression as demonstrated by Western blot 
analysis. Notably, however, we observed spe-
cific downregulation of phosphorylated ERK1/2 
in drug-sensitive CD133-, but not in resistant 
CD133+ or unfractionated cells. This indicates 
that constitutive MAPK hyperactivation obvi-
ously promotes ErbB drug resistance in 
CD133+ cells. These findings imply that subtle 
differences in the circuitry of ErbB, KRAS, RAF 
and PI3K, particularly at the bifurcation of RAS 
towards RAF or PI3K, do exist between CD133- 
and CD133+ cells and that this disparity con-
tributes to relative resistance against ErbB 
kinase inhibitors. Specifically, in cells lacking 
CD133, RAS proteins are obviously less auton-

omous and dominant (i.e. more dependent on 
activation through upstream receptors) in acti-
vating downstream RAF, MEK and ERK1,2 than 
in cells expressing CD133. However, the defini-
tive molecular link of CD133 with RAS has yet 
to be identified.

Since activation of ERK appears associated 
with ErbB drug resistant growth of HCT116 
cells, we wondered whether abrogation of ERK 
activity may overcome resistance against ErbB 
blockers. Given as single drug, AS703026 - an 
inhibitor of the upstream kinase MEK - was 
found to block HCT116 cell growth even in ErbB 
inhibitor resistant CD133+ cells. Intriguingly, 
this compound was found to synergistically 
cooperate with irreversible ErbB antagonists in 
growth control and can overcome ErbB drug 
resistance in HCT116 cells. In conclusion, we 
present evidence demonstrating that expres-
sion of the cancer stem cell marker CD133 

Figure 6. Effect of the MEK inhibitor AS703026 on the growth and the ErbB drug resistance of HCT116 colon cancer 
cells. (A) Unfractionated (left panel, Mix), sorted CD133+ and CD133- (middle panel), and sorted CD26+ and CD26- 
cells (right panel) were incubated for 72 hours with the indicated concentrations of AS703026 and then subjected 
to an MTT assay. In vehicle control (0.1% DMSO), optical density, which is proportional to cell number, has been 
arbitrarily set at 1 and values from treated cultures have been related to control and are given as ‘fold change’. 
Means ± SD, n = 3. (B) Bulk cells were incubated with the indicated concentrations of pelitinib, AS703026 or a 
combination of both drugs held at a fixed concentration-ratio of 5:1 for 48 hours and DNA synthesis was measured 
by 3H-thymidine uptake. Results are expressed as percent of control and represent the mean ± SD of triplicate de-
terminations (left panel). Moreover, the combination index for exposure to pelitinib along with AS703026 is given 
(right panel). An index of <1 indicates synergistic drug interaction.
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is associated with growth advantage and resis-
tance against irreversible ErbB inhibitors in 
colon cancer (stem) cells, which can be over-
come by concurrent blockade of MEK 
signaling.
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