Introduction

Despite being the least common of the skin cancers, malignant melanoma is by far the most lethal. Worldwide it has the highest increasing incidence rates of any common cancer, doubling approximately every 10-20 years in white populations [1]. In common with many other cancers, incidence increases with age, yet the fastest rising melanoma population appears to be young women.

Surgery remains the cornerstone of melanoma treatment and is effective in early stage disease. However, thicker melanomas, even when completely excised, are associated with only a 32% survival at 10 years [2] and even 15% of patients diagnosed with a thin melanoma (less than 1mm thick) will die within 10 years [3]. The challenge has been to manage those tumour cells that have effectively broken away from the primary site. Regional spread is most commonly first seen via the lymphatics, and distant spread via the vasculature. Both conventional chemotherapies and radiotherapy have been largely ineffective in patients presenting with metastatic disease. A typical response rate to any heralded drug has been in the order of 10%. As a result there has been a desperate need for novel targets in the treatment of melanoma.

Angiogenesis

Angiogenesis is defined as the growth of new blood vessels from a pre-existing vasculature and is as an absolute requirement for tumour survival and progression beyond a few hundred microns in diameter. In order for a cell to survive it must be assured of having a constant supply of both oxygen and nutrients and as a result cannot be more than a few hundred micrometers from the nearest blood vessel [4]. For a tumour to proliferate beyond this size, it must therefore produce adequate levels of pro-angiogenic growth factors to induce local angiogenesis. It is this pivotal role that defines angiogen-
Angiogenesis as one of the hallmarks of cancer [5], proving vital not only for initial development of the primary lesion but also during the establishment of distant metastases.

Although angiogenesis is essential during embryogenesis, once in adulthood it has only a relatively limited role in normal physiology and is almost exclusively linked to pathological processes. Furthermore, when angiogenesis is induced as part of normal physiological processes, such as wound healing and the female menstrual cycle, it tends to be only a transient process. This is in stark contrast to tumourigenesis, which involves the almost constant activation of angiogenesis to keep pace with the constantly growing, metabolically demanding tumour [5, 6]. This makes for an attractive therapeutic target, as not only is angiogenesis a central element of tumour growth and survival, but the relatively quiescent nature of much of the adult vasculature suggests that targeting active vessel proliferation ought not result in any significant or insurmountable side effects if systemically blocked. Furthermore, unlike the tumour cells themselves, the vasculature is hypothesised to remain relatively genetically stable and thus less likely to develop drug resistance and cease to respond to therapy [4]. In fact, there have been notable successes seen with anti-angiogenic therapies in the treatment of metastatic disease in several cancer types including breast cancer, colorectal cancer, small cell lung cancer and renal cell carcinoma to name but a few. So much so that in 2004, after the FDA approval of the anti-angiogenic therapy bevacizumab for treatment of advanced colorectal cancer, the FDA Commissioner at the time heralded anti-angiogenic therapy as “the fourth modality of cancer treatment” after surgery, chemotherapy and radiotherapy, establishing it as a distinct and valid weapon in the fight against cancer [7].

Angiogenesis and melanoma

Malignant melanoma has been well documented as an angiogenic tumour type, clearly demonstrating new vessel formation as an important step in disease progression from atypical melanocytes, through radial growth to the aggressive vertical growth phase [8]. However, the precise role of angiogenesis in the clinical setting has remained unclear and shrouded in debate. Several studies have sought to establish prognostic links with angiogenesis, correlating microvessel density (MVD) in and around the tumour with disease progression, metastasis and survival, yet have yielded mixed and uncertain results. In 1997 Erhard et al., described increasing angiogenesis with disease transition from the horizontal growth phase, that has a low metastatic potential, to the more aggressive vertical growth phase [9], suggesting a link between angiogenic status and metastatic potential. This is supported by several other studies that demonstrated a positive correlation between angiogenesis, vascularity and poor outcome [10-14], including a large prospective study of over 400 patients which was undertaken in 2002 and identified vascularity as the most important determinant of overall survival as determined by multivariate analysis [15]. However, several studies have equally identified either no correlation or a direct correlation, with increasing angiogenesis predicting paradoxical, and somewhat counter-intuitive, improved outcome and survival [16-18].

Despite this contradictory data, it is the fundamental role of angiogenesis in tumourigenesis that maintains it as an attractive target for novel therapies. Thus, given the successes seen with anti-angiogenic therapies in other solid cancer types, and the relatively limited therapeutic options currently available for melanoma patients presenting with metastatic disease, there has resulted an explosion of research into the potential role of anti-angiogenic therapy in advanced malignant melanoma.

Targetable controllers of angiogenesis

Like many physiological processes, angiogenesis is not a simple response to one solitary factor, but rather a complex, multi-step progression controlled by a fine balance of pro- and anti-angiogenic signals. During tumour growth an “angiogenic switch” is activated, disrupting this balance such that pro-angiogenic growth factor expression vastly outweighs that of anti-angiogenic signals and results in a corresponding growth of new vasculature [6]. Thus, all the emerging targets for therapy are aimed at redressing this balance to once again favour anti-angiogenic signals and so achieve a quiescent vasculature once more. However, the diversity of the factors involved in this process highlights the complexity of angiogenic control that must exist. This raises distinct challenges when tar-
Angiogenesis and melanoma

VEGF

Vascular Endothelial Growth Factor (VEGF) exists in mammals as several related families of glycoproteins including VEGF-A, B, C, D, and E [21], which mediate their effects through activation of the class III tyrosine kinase receptors VEGFR-1 (Flt-1), VEGFR-2 (KDR), and VEGFR-3 (Flt-4) [22-24]. VEGF-A, which is often simply referred to as VEGF, is considered to be one of the most important mediators of angiogenesis, both in the physiological and pathological setting [23, 25-27], and has been shown to be overexpressed in all known solid tumours [28]. The angiogenic response to VEGF is predominantly mediated through VEGFR-2 [22], with activation resulting in endothelial cell proliferation and migration, along with lumen formation and increased vessel dilatation and permeability [22, 29-31] (for schematic Figure 1).

Through alternate splicing within exons 6 and 7, VEGF exists as a series of isoforms of differing amino acid length, after which they are named VEGF121, VEGF145, VEGF165 (the dominant isoform), VEGF189 and VEGF206 [21, 32, 33]. These differing isoforms are all highly angiogenic and only differ in their solubility as the variably expressed exons encode heparin-binding domains, which is important in controlling the bioavailability of these isoforms and thus in establishing chemotactic gradients to guide the newly developing vasculature [21, 34, 35]. In-

Figure 1. Schematic of tumour angiogenesis. Several different growth factors are secreted by the tumour to induce local angiogenesis through sprouting from nearby vasculature. The predominant factor is VEGF that acts on both endothelial cells and in an autocrine manner on the tumour itself. Matrix Metalloproteinases (MMPs) drive the corresponding re-modelling of the extracellular matrix, and are also able to release any bound growth factors simultaneously, thereby optimising the pro-angiogenic environment. Immature vessels, which lack pericyte coverage, are susceptible to anti-VEGF therapy, whereas those covered with pericytes are protected by the secretion of paracrine growth factors.
indeed, this has important implications for melanoma as the precise isoforms expressed by the developing tumour have a significant impact on tumour and vasculature growth. When overexpressed in an otherwise non-tumourigenic, non-VEGF expressing melanoma cell line, VEGF121 and VEGF165 resulted in an aggressive tumour with a highly extensive supporting vasculature, whereas VEGF189 expression resulted in a relatively dormant tumour with limited vascular supply as the expressed VEGF isoform remains almost entirely bound to the expressing cells [36].

The potential role of anti-angiogenic therapies which target this VEGF pathway are made an even more attractive target by the fact that VEGF receptors are known to be expressed by melanoma cells, but not melanocytes [37, 38]. This suggests a potential autocrine role for VEGF expression by the developing tumour, with increasing VEGF expression not only improving local vascular supply, but perhaps also acting as a direct stimulator of tumour growth. Therefore any therapy that directly targets this pathway, may not only starve the tumour of vital oxygen and nutrients through blockade of its vascular supply, but also directly inhibit tumour cell survival and proliferation, perhaps even rendering them more susceptible to more conventional treatment with chemo- or radiotherapy [39].

This dogma of the pro-tumourigenic role of VEGF isoforms has however, recently been challenged by the description of an alternative family of VEGF splice variants termed VEGFxxxb where xxx denotes amino acid number [40]. This family of almost identical sister isoforms results from selection of a differential splice site in a region previously believed to be the 3’-untranslated region (3’UTR). As a result, the terminal exon of VEGF, exon 8, actually exists as two subexons, exons 8a and 8b. Conventional VEGF results from the selection of the proximal splice site and includes exon 8a encoding six amino acids. This novel family of sister isoforms however, is generated by selection of the distal splice site and includes exon 8b, which encodes a different set of six amino acids [40]. Although this alternative splicing event only alters the terminal six amino acids, it has profound effects on both the structure and resulting function of the translated protein, with the VEGFxxxb family demonstrating highly anti-angiogenic effects [40-42]. These VEGFxxxb isoforms are highly expressed as part of normal physiology [42] and unlike conventional VEGF, have been seen to be downregulated in many solid tumours [40, 41, 43]. Indeed, when overexpressed in the A375 melanoma cell line, VEGFxxxb was shown to inhibit tumour growth in vivo [41] and furthermore, expression of this inhibitory VEGFxxxb in archival primary melanoma samples was associated with reduced metastatic spread irrespective of tumour thickness [44].

Neuropilin

Neuropilin-1 and 2 (Nrp-1, Nrp-2) are known to act as co-receptors for the VEGFRs and enhance VEGF signalling upon binding [23, 45], and there is evidence to suggest that VEGF may be able to signal independently through Nrp in the absence of VEGFR-1 or 2 [46-48]. In addition, rather like VEGFRs, Nrp receptors have been shown to be expressed not only by tumour associated endothelial cells but also by the tumour cells themselves, suggesting it may play a crucial role in tumourigenesis, although such a role is yet to be fully understood [47, 48]. Intriguingly, there is growing evidence to suggest that the combination of neuropilin blockade and anti-VEGF therapy is synergistic in its effects. In an animal model of melanoma growth, blocking Nrp-2 using a mutated soluble neuropilin-2 B domain in combination with the anti-VEGF antibody bevacizumab (Avastin) resulted in a greater inhibition of overall tumour growth, than either treatment achieved alone [49]. Similarly, the blockade of Nrp-1 in combination with the same anti-VEGF treatment as part of an animal model utilising a lung cancer cell line, demonstrated an additive effect on inhibiting tumour growth. In their paper, Pan et al. propose a possible mechanism for this observation, describing an enhanced susceptibility of the tumour associated vasculature to the anti-VEGF therapy in the presence of the Nrp-1 inhibition as a result of a disrupted relationship between the newly developing vessels and their usually protective pericytes [50].

Pericyte coverage

Pericytes are well known to play a vital role in supporting normal vasculature and although it was previously believed that these cells were largely absent from the aberrant neovasculature of the tumour, there is growing evidence to suggest that they are present in most, if not all tumours [51-53]. These pericytes are known to cover the surface of the developing vessels and have been shown to demonstrate a paracrine
Angiogenesis and melanoma

relationship in which they secrete survival signals to support the underlying endothelial cells [5, 53, 54]. These pericyte covered vessels are considered far more stabilised and are often referred to as ‘mature’ vessels as opposed to the ‘immature’, leaky, unstable vessels that lack pericyte association. When treated with anti-VEGF therapy, it is possible that these supporting pericytes protect the underlying endothelial cells such that it is only the immature vessels that appear to be susceptible to treatment [50], thus rendering anti-VEGF therapy potentially less effective in established advanced disease, where of course, novel therapies are first evaluated. It appears that these supporting pericytes are driven by the tumour and endothelial cell production of Platelet Derived Growth Factor β (PDGF-β) [54] and indeed upon blockade of PDGF-β and VEGF in combination, results in a more effective treatment regimen [55], though it has been suggested that this combination therapy may only be able to target a certain subset of pericytes [56]. Further complicating the seductive idea that anti-VEGF and PDGF therapy is the key to destabilising and disrupting neovascularature, is the fact that anti-VEGF therapy can also induce an increase in Angiopoietin-1 (Ang-1) that can increase pericyte coverage and thus counteract the effects of the anti-VEGF therapy [57]. These many compensatory pathways only highlight the importance of considering the role of pericytes in contributing to the development of resistance to anti-angiogenic therapy.

Angiopoietin

Angiopoietin-1 and 2 (Ang-1 and Ang-2) have both been shown to play an important role during angiogenesis and exert their effects by binding to the Tie receptor tyrosine kinase receptors (Tie-1 and Tie-2) [58, 59]. As with many angiogenic factors, this role is a complex one that can be very context dependent, with Ang-1 stimulating pericyte coverage of vessels, thereby stabilising the developing vasculature and Ang-2 (acting as an Ang-1 antagonist) stimulating the pericytes to become dissociated for the endothelial cells so that they may respond to VEGF and proliferate and migrate as part of a pro-angiogenic response [58]. Furthermore, it has been demonstrated that VEGF can also directly activate the Tie-2 receptor [60], suggesting important crosstalk between the VEGF and angiopoietin/Tie receptor pathways. This is further supported in that blockade of both VEGF and angiopoietins appears to have an additive effect on reducing tumour neovascularisation [61, 62]. In melanoma, high levels of Ang-2 in the blood stream have been identified as a poor prognostic marker associated with disease progression, metastasis and reduced overall survival, indicating that this pathway may be an important target [63].

FGF

It is all too tempting to focus on the importance of VEGF in angiogenesis and we neglect, at our patients’ peril, other key angiogenic pathways. The fibroblast growth factor (FGF) ligands are highly angiogenic and in particular, basic FGF (bFGF) expression has been demonstrated in melanoma cells but not melanocytes [64, 65]. Expression of bFGF has been shown to have both paracrine effects, through the stimulation of local angiogenesis, but also autocrine effects, directly increasing tumour cell proliferation through activation of FGF receptors expressed on the melanoma cells themselves [8, 64]. This dual role of FGF suggests it to be a very appealing target and indeed FGF expression was one of the first noted mechanisms mediating resistance to an anti-VEGF therapy [66]. This was indentified as part of an animal model of pancreatic cancer, where initial treatment with a VEGFR-2 monoclonal antibody was able to reduce tumour vascularity, however this response was only short lived with a rebound in growth and neovascularisation noted just four weeks later. This was associated with an increase in FGF expression and thus, when an FGF-trap was introduced in combination with the VEGFR-2 antibody treatment, there was a reduction in resistance development [66, 67]. This serves to highlight the importance of abeyant pathways of angiogenic signalling that provide diversity in normal physiology, and can be activated to facilitate drug resistance in pathological angiogenesis. Furthermore this has been clinically evidenced in glioblastoma patients receiving anti-VEGF therapy, where progressive disease was associated with increasing levels of circulating bFGF [66, 68].

Extracellular matrix re-modeling

In order for new blood vessels to form there must be corresponding remodelling of the surrounding extracellular matrix (ECM), a process
Angiogenesis and melanoma

that is usually under the tight regulation of Matrix Metalloproteinases (MMPs) and Tissue Inhibitor Metalloproteinases (TIMPs). Expression of MMPs has been clearly shown to support tumour angiogenesis and indeed increasing expression is well correlated with metastasis and aggressive disease in melanoma [69-71]. The gelatinases, MMP-2 and MMP-9 have been highly linked with angiogenesis as they are both able to digest basement membrane components and are the most studied MMPs with regards to melanoma [72]. MMP-9 has further been identified as having the ability to release heparin bound VEGF from the extracellular matrix, effectively increasing the angiogenicity of the local microenvironment [73]. There is however, growing evidence to suggest that it is in fact the cell surface associated membrane-type matrix metalloproteinase (MT1-MMP) that is most relevant during melanoma neoangiogenesis. It not only demonstrates direct effects on vessel formation [74-76], but also has been clearly shown to be upregulated in melanoma [77].

While it is clear the MMPs have an important role to play during melanoma progression and neoangiogenesis, the role of the naturally occurring inhibitors, TIMPs, is far less clear. Some evidence suggests that increased expression of TIMPs can reduce neoangiogenesis and tumour development [78], however TIMP expression in pancreatic cancer cells has also been linked to an increase in tumour cell proliferation [79]. Indeed, an increase in TIMP expression has even been correlated to the level of tumour invasion, though it is hypothesized that this may reflect a host response in an attempt to control the corresponding increase in MMP expression and protect the ECM integrity [80].

Other factors

Although these are some of the major players that are currently under investigation for their role in melanoma angiogenesis, this is by no means an exhaustive list. For example, Placental Growth Factor (PIGF) has been implicated as yet another alternative pro-angiogenic signal through which anti-VEGF therapy resistance may develop, with increasing circulating levels of PIGF noted as part of both preclinical and clinical trials following VEGF signalling blockade [66, 68, 81]. Equally, there are several naturally occurring inhibitors of the angiogenic process, such as thrombospondin, anglostatin and endostatin, which have all been identified as being potentially able to reduce tumour growth if over-expressed [82]. There is also growing interest in the role of integrins during angiogenesis as another potential therapeutic target, though as yet this work has not reached clinical trials [83]. Efforts to control the angiogenic nature of the tumour are further complicated by the role of other cell types within the tumour microenvironment. Both cancer associated fibroblasts and immune inflammatory cells recruited as part of the tumour associated inflammatory response, have been shown to contribute to the angiogenicity of the tumour by directly producing proangiogenic growth factors [5, 84], adding yet another layer of control that needs to be considered. Indeed, despite the many successes that have been achieved with developing antiangiogenic therapies, none have yet proved to be the reliable panacea many had anticipated. It is possible that their true potential will only be fully realised when we properly understand the role and interplay of each factor.

Current therapy

VEGF targets

Dacarbazine, is currently the generally accepted standard of care for patients with advanced melanoma, and with response rates in phase III trials of 9.8%-12% [85], reflects the disappointing results seen with chemotherapy overall. VEGF is the principle ligand targeted by antiangiogenic therapies of which bevacizumab (Avastin (ROCHE)), a humanized monoclonal IgG antibody against VEGF, but not other peptide growth factors. It was the first antiangiogenic agent to be granted FDA approved in 2004 for use in colorectal cancer based upon the publication of results of a pivotal combination therapy trial in advanced colorectal cancer (Study AVF2107g) [87]. The UK license was granted the following year in 2005. To date, there are 24 US trials either recruiting or in analysis assessing bevacizumab, alone or in different combinations with chemotherapeutic agents for cutaneous melanoma (a further 4 trials are targeting ocular variants) (www.clinicaltrials.gov). The majority of these trials are investigating bevacizumab in advanced metastatic disease.
Angiogenesis and melanoma

Initial evaluations of bevacizumab in cutaneous melanoma were conducted in 2007 in a Phase II trial as either a monotherapy or combined with low dose interferon, IFN-α2b (inhibiting FGF from tumour cells [88]). 25% of patients showed increased disease stabilisation ranging 24-146 weeks (but there was no significant improvement in Overall Survival (OS) between mono and combined therapy (8.5 vs 10 months [89])), though it would appear that in combination with either a higher dose of IFN-α2b [90], or dacarbazine, these response rates were further improved [91] (Table 1). The BEAM trial (NCT00434252), a randomised multi-centre Phase II trial for melanoma treatment with around 200 patients, evaluated carboplatin and paclitaxel with or without bevacizumab as first line therapy for patients presenting with metastatic disease. This trial demonstrated an improvement in Progression-Free Survival (PFS) of 22% and OS of 21% by the addition of bevacizumab to the standard chemotherapy. Whilst the results were not statistically significant (95% CI: 0.55-1.13; p=0.19), bevacizumab still appeared beneficial [92] (Table 2). This was further supported in 2009, with a Phase II trial combining twice-weekly bevacizumab at 10mg/kg with a regime of paclitaxel/carboplatin in 53 patients with stage IV unresectable melanoma reporting disease stabilisation in 57% of patients for 8 or more weeks, with median progression-free survival of 6 months and overall survival of 12 months [93]. This is in contrast to the more usual OS of 6 months for this advanced stage of disease.

In 2010 Del Vecchio et al. published a multi-centre Phase II single arm trial using bevacizu-

Table 1 Melanoma trials: published data

<table>
<thead>
<tr>
<th>Published Trials</th>
<th>Therapy</th>
<th>Phase (n)</th>
<th>PR%</th>
<th>medPFS (months)</th>
<th>TTP (months)</th>
<th>mOS (months)</th>
<th>Year</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varker et al.</td>
<td>Bevacizumab ± interferon- α2b</td>
<td>II</td>
<td>32</td>
<td>6</td>
<td>3.0</td>
<td>10</td>
<td>8.5</td>
<td>2007</td>
</tr>
<tr>
<td>Von Moos et al.</td>
<td>Temozolomide, bevacizumab</td>
<td>II</td>
<td>62</td>
<td>15</td>
<td>4.2</td>
<td>9.6</td>
<td>2011</td>
<td>[96]</td>
</tr>
<tr>
<td>Grignol et al.</td>
<td>Bevacizumab, high dose interferon α-2b</td>
<td>II</td>
<td>25</td>
<td>25</td>
<td>4.8</td>
<td>17</td>
<td>2011</td>
<td>[90]</td>
</tr>
<tr>
<td>Eggert et al.</td>
<td>Pegylated interferon- α2b, sorafenib</td>
<td>II</td>
<td>55</td>
<td>3.6</td>
<td>2.5</td>
<td>9.6</td>
<td>2011</td>
<td>[123]</td>
</tr>
<tr>
<td>Carvajal et al.</td>
<td>Imatininib</td>
<td>II</td>
<td>28</td>
<td>21</td>
<td>3.0</td>
<td>11</td>
<td>2011</td>
<td>[114]</td>
</tr>
<tr>
<td>Hainsworth et al.</td>
<td>Bevacizumab, everolimus</td>
<td>II</td>
<td>57</td>
<td>12</td>
<td>4.0</td>
<td>8.6</td>
<td>2010</td>
<td>[124]</td>
</tr>
<tr>
<td>Del Vechio et al.</td>
<td>Foterustine, bevacizumab</td>
<td>II</td>
<td>20</td>
<td>15</td>
<td>8.3</td>
<td>20.5</td>
<td>2010</td>
<td>[94]</td>
</tr>
<tr>
<td>Vihinen et al.</td>
<td>Bevacizumab, dacarbazine, IFN-α2a</td>
<td>II</td>
<td>26</td>
<td>15</td>
<td>2.3, 8.1 responders</td>
<td>11.5</td>
<td>2010</td>
<td>[91]</td>
</tr>
<tr>
<td>Ott el al.</td>
<td>Sorafenib</td>
<td>II</td>
<td>36</td>
<td>3</td>
<td>2.0</td>
<td>2010</td>
<td>[102]</td>
<td></td>
</tr>
<tr>
<td>Hodi, O’Day et al.</td>
<td>Ipilimumab ± gp100 vaccine</td>
<td>III</td>
<td>676</td>
<td>9.5</td>
<td>5.5</td>
<td>2.86</td>
<td>10.0</td>
<td>2010</td>
</tr>
</tbody>
</table>

Table 2 Melanoma trials: selected conference abstracts

<table>
<thead>
<tr>
<th>Conference abstracts</th>
<th>Therapy</th>
<th>Phase</th>
<th>Patient (n)</th>
<th>PR%</th>
<th>medPFS (months)</th>
<th>mOS (months)</th>
<th>Year</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEAM Trial</td>
<td>Carboplatin, paclitaxel ± bevacizumab</td>
<td>II</td>
<td>214</td>
<td>5.6</td>
<td>4.2</td>
<td>12.3</td>
<td>8.6</td>
<td>2009</td>
</tr>
<tr>
<td>Hodi et al.</td>
<td>Ipilimumab, bevacizu- mab</td>
<td>I</td>
<td>22</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRIM 3</td>
<td>Vemurafinib vs dacar- bazine</td>
<td>III</td>
<td>675</td>
<td>48 vs 5.5</td>
<td>5.3 vs 6.1</td>
<td>84% vs 64% at 1 year</td>
<td>2011</td>
<td>[127]</td>
</tr>
</tbody>
</table>

PR - Partial Response, medPFS – median Progression Free Survival, TTP - Time to Progression, mOS – median Overall Survival
mab (15mg/kg every 3 weeks), and the nitrosourea alkylating agent fotemustine (100 mg/m² by intravenous administration on days 1, 8, and 15, repeated after 4 weeks). The authors report mean Time To Progression (TTP) of disease to be 8 months and OS 20.5 months in 20 chemo-naive advanced melanoma patients. Serum VEGF-A, VEGF-C, VEGFR-1 and VEGFR-2 and overall all of the sixteen measured pro-angiogenic serum markers were significantly reduced post treatment [94]. This compares favourably with combination treatment using CVD combination (cisplatin, vinblastine or vindesine, and dacarbazine) plus interferon (IFN)-α and interleukin (IL)-2, in 190 melanoma patients achieving mean TTP of 4.9 months in a phase III trial [95].

Results published this year combining temozolomide (150mg/m²) and bevacizumab (10mg/kg per 2 weeks) in a Phase II trial [96], demonstrated OS of 12 months vs. 9.2 months (mOS 9.6), in patients with BRAF mutated melanomas vs. wild type. Temozolomide is of particular interest because it crosses the blood brain barrier and hence may improve the outcome of patients with cerebral metastases (a key driver of mortality in stage IV disease). Overall temozolomide combined with bevacizumab improved the quality of life in end-stage of disease.

Whilst bevacizumab is a generally well-tolerated drug, concerns have been raised in Ranpura’s 2011 meta-analysis that has reported a 1.46 fold increase in fatal adverse events in cancer patients treated with bevacizumab compared to chemotherapy alone (incidence 2.5% vs. 1.7%; p=0.01) [97]. This appears to contradict the original hypotheses that the adult vasculature is relatively quiescent and as such targeting angiogenesis ought not result in any significant side effects, suggesting that we still do not fully understand the actions of these therapies.

In all of these prior investigations, the patients recruited have all had advanced disease and it has been suggested that it is possible that anti-angiogenic therapy may provide more successes if targeting an earlier stage when active angiogenesis is likely to be more pivotal. As a result, the UK Adjuvant Avastin Trial in High-Risk Melanoma (AVAST-M) study has focused on a preventative strategy targeting angiogenesis to disrupt early metastasis following surgical resection of primary disease (and corresponding microscopic metastasis detected at Sentinel Lymph Node Biopsy). This is an actively recruiting Phase III trial offering adjuvant therapy to 1320 patients following resection of AJCC stage IIB (T3bN0M0 and T4aNOM0), IIC (T4bN0M0) and III (TxN1-3M0) cutaneous melanoma randomised to either bevacizumab 7.5mg/kg three-weekly for 1 year, or observation. The primary endpoint of the study is OS, with secondary endpoints relating to Disease Free Interval (DFI), Distant Metastasis Free Interval (DMFI) and Toxicity. Thus far toxicity profiling has been encouraging and there is a significant translational component to the trial to evaluate biomarker proteins and candidate genes as predictors of response or progression in the cohort. This is a unique trial that will go a long way to establishing the role of bevacizumab in preventing disease recurrence by controlling any microscopic disease that has escaped beyond the reach of the surgeon.

Whilst bevacizumab, a monoclonal antibody that binds all known isoforms of VEGF-A, is the most well known of the anti-angiogenic therapies, there are alternative approaches. Other VEGF targeted agents use soluble receptor constructs preventing binding to, and activation of VEGFR-1, VEGFR-2, NRP-1 and NRP-2. There is also the rise of broad Tyrosine Kinase Inhibitors (TKIs) or Small-molecule Signal Transduction Inhibitor (STI) that can, in addition to anti-VEGF signalling functions, inhibit the activity of PDGFR [98].

Broad blockade

Sorafenib (BAY 43-9006) was first developed as a BRAF inhibitor but later found to have anti-angiogenic properties inhibiting VEGFR in several xenograft models [99]. Significant clinical responses have been seen in both leukaemia and Gastro Intestinal Tumours (GIST) [100, 101]. There was understandable enthusiasm for this approach in melanoma, but as a monotherapy, sorafenib has proved disappointing with no significant responses reported [102-104]. When used in series against a variety of advanced solid tumours (including malignant melanoma), sorafenib followed by bevacizumab was anticipated to demonstrate additive effects by combining a specific anti-ligand antibody with the more promiscuous STI. It was also anticipated that lower doses of each could be used because these agents would offer reduced
angiogenesis and melanoma

VEGF production courtesy of disrupted VEGFR-2 signalling, and inhibition of vascular proliferation and survival pathways via feed-forward and feed-back loop disruption [105]. The authors found however, that the only additive effects were seen in relation to significantly increased toxicity that prevented the investigators escalating doses of either drug to the standard therapeutic doses. Furthermore, the only group of patients to see any meaningful clinical activity were those with ovarian cancer [106].

Currently sorafenib and bevacizumab are being assessed (NCT00387751) in a multicentre Phase II trial with 45 patients [107], with another ongoing study (NCT00538005) combining a Phase I (bevacizumab) /Phase II dose escalation study (oxaliplatin/sorafenib) [108]. Temozolomide which has recently shown improved disease stabilization combined with bevacizumab in a Phase III trial [96], also showed benefits in combination therapy with sorafenib in a Phase II trial treating patients with advanced melanoma [109] (Table 3).

Axitinib (AGO13736) is a small molecule inhibitor of VEGFR-1, VEGFR-2 and VEGFR-3. A Phase II trial with 32 melanoma patients demonstrated a median OS of 6.8 months and OR rate of 15.6% [110]. Currently, a trial of axitinib and carboplatin/paclitaxel in melanoma (NCT01174238) is measuring primary outcomes of Objective Response Rate (ORR), and seeking to evaluate the optimal time between drug dosing [111]. A 60 patient trial (NCT01321437) is projected to start recruiting shortly, investigating axitinib monotherapy in stage III melanoma [112] (Table 3).

Some 28% of melanomas arising from acral, mucosal, and chronically sun-damaged sites harbor activating mutations and amplification of the type III transmembrane receptor tyrosine kinase KIT [113]. The TKI imatinib targets c-KIT and PDGFR, described earlier as playing a role in pericyte recruitment and modulation of autocrine tumour growth. The 2005 phase II study of imatinib was disappointing with no ORs reported and median OS of only 3.9 months. The recent trial from Memorial Sloane Kettering has reported OR rate of 16% and OS of 11.5 months using imatinib in c-KIT mutated melanoma [114]. A new study is investigating temozolomide with imatinib (NCT00667953) with no published data yet available.

Back in the 1990s there was an enormous enthusiasm for targeting MMPs and a number of small molecule MMP inhibitors such as marimastat (British Biotech) were developed and used both alone and in combination with other conventional chemotherapies following promising pre-clinical trials. Sadly, the considerable musculoskeletal toxicity and limited anti-tumour activity in most melanoma patients [115] has seen the decline of this target and there are currently no active trials.

A new hope?

Perhaps the most encouraging new targets for melanoma are the BRAF inhibitors such as vemurafenib (Roche/Plexikon) with startling early results in metastatic melanoma. Phase I data presented in Milan in 2010 described reduction in brain metastases in 9 out of 10 patients treated. The reduction in size was 20-100%. The drug has been shown to be most in active in patients whose melanoma harbours the BRAF V600E mutation (seen in some 50% of melanoma patients), but wild-type tumours also show considerable response. BRAF is a controller in the important MAPK signalling pathway responsible for controlling cell survival, growth, proliferation and angiogenesis. The main concern, however, is the emergence of resistance
at 8-12 months. This is thought to be mediated via upstream receptor tyrosine kinases such as N-RAS signalling via alternative compensatory pathways such as AKT and mTOR. It is reasonable to anticipate therefore that targeting these pathways with inhibitors may prolong the effectiveness of BRAF inhibitors [116].

Why doesn’t it work?

Despite early hopes that anti-angiogenic therapies would offer a turning point in oncology, progress in the treatment of melanoma has been limited. Some patients simply show no response, while others show partial response, quickly followed by further progression. There are many possible issues that may underlie this, and it is possible that for each patient the precise mechanisms are specific, further complicating the challenge of circumventing these problems.

Drug resistance

Lee Ellis elegantly describes the idea of inherent and acquired resistance to anti-angiogenic therapy [66]. He highlights the need to consider whether a particular tumour type best responds to anti-VEGF monotherapy, suggesting resistance is modulated via the VEGF pathway alone, or (as is more likely the case in melanoma) clinical benefit is most commonly seen in poly therapy – and thus a more complex interplay of resistant pathways and mutations will exist. Ellis clearly dissects the many diverse mechanisms through which this resistance may develop from compensatory signalling pathways and interplay with the surrounding microenvironment, to recruitment of myeloid cells and resistance mediated via the combined chemotherapy rather than the anti-VEGF drug. As frequently evidenced in pre-clinical models, success may lie in the combination of therapies, whether that be in the form of targeting multiple angiogenic pathways simultaneously, sequencing different anti-angiogenic therapies as resistance develops, or combining alternative chemo or biotherapies with anti-angiogenics.

There remain a number of pathways in angiogenesis that are yet to be fully understood. For example, the identification of novel inhibitory isoforms of VEGF in both the kidney and renal cell carcinoma [40, 41]. This has lead to the description of inhibitory isoforms of VEGF in melanoma that follow a non-metastatic course, in contrast to a loss of this expression in aggressive tumours that have metastasised, in many cases despite being apparently early stage, thin primary lesions [44]. This underscores the complexities of angiogenic control, and until these pathways, and the often surprising route they take to a final destination are better understood, it is possible that we will not fully comprehend the many possible resistance mechanisms.

Advanced drug targeting

It would be naïve of us to consider all the different available therapies as being simply interchangeable; some combinations cause unexpected increases in toxicity such as seen with sorafenib followed by bevacizumab [106], whereas others may be truly synergistic. Clinicians also have a duty to look beyond the PR rate, the SD rate and OS rate and remain aware of changes in performance status, co-morbidity and quality of life for the patients receiving these treatments.

As we increasingly appreciate the heterogeneic nature of melanoma, the issue of biomarkers to predict an individual patient’s most efficacious treatment regimen, remains relevant. Not least because in the UK, bevacizumab has been denied funding by the regulatory body NICE (in spite of encouraging outcomes in trial) because it is simply not deemed effective enough across the entire trial population. Were we able to reliably identify sub-populations of patients to receive high cost therapies that in fact deliver impressive outcomes, the story may be very different.

Other problems

There is now growing evidence to support the occurrence of ‘vasculogenic mimicry’ in cutaneous melanoma, in which aggressive tumour cells are able to begin to form vascular channels that are devoid of endothelial cells [117, 118]. Although there is still some debate as to the exact nature of these channels, it does raise the concern that many anti-angiogenic therapies may fail to target these channels and thus tumour perfusion would continue unfettered. This suggests the need for an anti-angiogenic agent that will target the pathways that drive both classical neovascularisation and vascu-
Angiogenic mimicry, such as the use of MMP inhibitors, with several MMPs including MT1-MMP having been implicated in channel formation [117, 119, 120]. However as yet clinical trials utilising MMP inhibitors have been relatively unsuccessful with the reporting of significant toxicity and limited effectiveness [70, 72, 115]. Alternatively, it may necessitate the use of a combination of therapies in which an anti-angiogenic is combined with conventional chemotherapy, such that any regions of tumour supported by vascular channels that fail to respond to the anti-angiogenic treatment itself, are still targeted with an alternative therapeutic strategy [117]. This is further supported by the demonstration of the highly heterogenic nature of melanomas, with some melanoma cells having been shown to successfully withstand both hypoxia and metabolic stress, suggesting they may not be susceptible to anti-angiogenic therapy alone [121, 122]. This appears to be well reflected in patients, with increasing successes reported when anti-angiogenic treatments have been combined with conventional chemotherapy.

Future directions

It is conceivable that clinicians and scientists caring for patients with melanoma, and seeking new strategies to treat this unpredictable and aggressive disease, stand at the dawn of a new era in melanoma therapy with the emergence of some of the first ever credible adjuvant therapies. It is anticipated that anti-angiogenics will continue to develop as part of the cocktail of drugs needed to reduce the burden of disease, and maintain metastases in quiescence. We wait to see if the AVAST-M Trial will describe a new and credible role for bevacizumab in early disease, and constantly strive to understand the subtle complexities of angiogenesis that we may control this phenomenon for benefit of our current, and future patients.

Declaration of conflicts of interest

We declare that we have no conflicts of interest relating to this article.

Address correspondence to: Mr Rowan Pritchard-Jones, Mersey Academic Plastic Surgery Group, Liverpool Cancer Research UK Centre, Department of Molecular and Clinical Cancer Medicine, The Duncan Building, Daulby Street, Liverpool, L69 3GA, UK, Email: rowanpj@liv.ac.uk

References

[2] Retsas S, Henry K, Mohammed MQ and MacRae K. Prognostic factors of cutaneous melanoma and a new staging system proposed by the American Joint Committee on Cancer (AJCC); validation in a cohort of 1284 patients. Eur J Cancer 2002; 38: 511-516.
Angiogenesis and melanoma

Angiogenesis and melanoma

[62] Helfrich I, Edler L, Sucker A, Thomas M, Chris-
Angiogenesis and melanoma

tian S, Schadendorf D and Augustin HG. Angiopoietin-2 levels are associated with disease progression in metastatic malignant melanoma. Clin Cancer Res 2009; 15: 1384-1392. [64]

Lazar-Molnar E, Hegyesi H, Toth S and Falus A. Autocrine and paracrine regulation by cytokines and growth factors in melanoma. Cytokine 2000; 12: 547-554. [65]

Sounni NE, Paye A, Host L and Noel A. MT-MMPs as Regulators of Vessel Stability Associated with Angiogenesis. Front Pharmacol 2011; 2: 111. [76]

Ebos JM, Lee CR, Christensen JG, Mutsaers AJ and Kerbel RS. Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proc Natl Acad Sci U S A 2007; 104: 17069-17074. [82]

Angiogenesis and melanoma

[103] Eisen T, Ahmad T, Flaherty KT, Gore M, Kaye
Angiogenesis and melanoma

Anderson MD, Bevacizumab and Sorafenib in Treating Patients With Unresectable Stage III or Stage IV Malignant Melanoma. http://www.clinicaltrials.gov/ct2/show/NCT00387751?term=NCT00387751&rank=1

Amaravadi R SL, Mc Dermott D et al. Updated results of a randomised Phase II study comparing two schedules of temozolamide in combination with sorafenib in patients with advanced melanoma. J Clin Oncol. 25(18s) 2007; Abstract 8527:

Daud A. A Two Arm Trial of Axitinib and Carboplatin/Paclitaxel in Melanoma (CC# 10852). http://www.clinicaltrials.gov/ct2/show/NCT01174238?term=NCT01174238&rank=1

Hainsworth JD, Infante JR, Spigel DR, Peyton JD, Thompson DS, Lane CM, Clark BL, Rubin MS, Trent DF and Buiris HA, 3rd. Bevacizumab...
Angiogenesis and melanoma

